How are Anonymous inner classes used in Java?

By an "anonymous class", I take it you mean anonymous inner class.

An anonymous inner class can come useful when making an instance of an object with certain "extras" such as overriding methods, without having to actually subclass a class.

I tend to use it as a shortcut for attaching an event listener:

button.addActionListener(new ActionListener() {
    @Override
    public void actionPerformed(ActionEvent e) {
        // do something
    }
});

Using this method makes coding a little bit quicker, as I don't need to make an extra class that implements ActionListener -- I can just instantiate an anonymous inner class without actually making a separate class.

I only use this technique for "quick and dirty" tasks where making an entire class feels unnecessary. Having multiple anonymous inner classes that do exactly the same thing should be refactored to an actual class, be it an inner class or a separate class.


Anonymous inner classes are effectively closures, so they can be used to emulate lambda expressions or "delegates". For example, take this interface:

public interface F<A, B> {
   B f(A a);
}

You can use this anonymously to create a first-class function in Java. Let's say you have the following method that returns the first number larger than i in the given list, or i if no number is larger:

public static int larger(final List<Integer> ns, final int i) {
  for (Integer n : ns)
     if (n > i)
        return n;
  return i;
}

And then you have another method that returns the first number smaller than i in the given list, or i if no number is smaller:

public static int smaller(final List<Integer> ns, final int i) {
   for (Integer n : ns)
      if (n < i)
         return n;
   return i;
}

These methods are almost identical. Using the first-class function type F, we can rewrite these into one method as follows:

public static <T> T firstMatch(final List<T> ts, final F<T, Boolean> f, T z) {
   for (T t : ts)
      if (f.f(t))
         return t;
   return z;
}

You can use an anonymous class to use the firstMatch method:

F<Integer, Boolean> greaterThanTen = new F<Integer, Boolean> {
   Boolean f(final Integer n) {
      return n > 10;
   }
};
int moreThanMyFingersCanCount = firstMatch(xs, greaterThanTen, x);

This is a really contrived example, but its easy to see that being able to pass functions around as if they were values is a pretty useful feature. See "Can Your Programming Language Do This" by Joel himself.

A nice library for programming Java in this style: Functional Java.


Anonymous inner class is used in following scenario:

1.) For Overriding(subclassing), when class definition is not usable except current case:

class A{
    public void methodA() {
        System.out.println("methodA");
    }
}

class B{
    A a = new A() {
        public void methodA() {
            System.out.println("anonymous methodA");
        }
    };
}

2.) For implementing an interface, when implementation of interface is required only for current case:

interface InterfaceA{
    public void methodA();
}

class B{
    InterfaceA a = new InterfaceA() {
        public void methodA() {
            System.out.println("anonymous methodA implementer");
        }
    };
}

3.) Argument Defined Anonymous inner class:

interface Foo {
    void methodFoo();
}

class B{
    void do(Foo f) { }
}

class A{
    void methodA() {
        B b = new B();
        b.do(new Foo() {
            public void methodFoo() {
                System.out.println("methodFoo");
            } 
        });
    } 
}