Performing case-statement in mongodb aggregation framework
what corresponds to the "case" SQL statement in the aggregation framework, is the $cond operator (see manual). $cond statements can be nested to simulate "when-then" and "else", but I have chosen another approach, because it is easier to read (and to generate, see below): I'll use the $concat operator to write the range string, which then serves as grouping key.
So for the given collection:
db.xx.find()
{ "_id" : ObjectId("514919fb23700b41723f94dc"), "name" : "A", "timespent" : 100 }
{ "_id" : ObjectId("514919fb23700b41723f94dd"), "name" : "B", "timespent" : 200 }
{ "_id" : ObjectId("514919fb23700b41723f94de"), "name" : "C", "timespent" : 300 }
{ "_id" : ObjectId("514919fb23700b41723f94df"), "name" : "D", "timespent" : 400 }
{ "_id" : ObjectId("514919fb23700b41723f94e0"), "name" : "E", "timespent" : 500 }
the aggregate (hardcoded) looks like this:
db.xx.aggregate([
{ $project: {
"_id": 0,
"range": {
$concat: [{
$cond: [ { $lte: ["$timespent", 250] }, "range 0-250", "" ]
}, {
$cond: [ { $and: [
{ $gte: ["$timespent", 251] },
{ $lt: ["$timespent", 450] }
] }, "range 251-450", "" ]
}, {
$cond: [ { $and: [
{ $gte: ["$timespent", 451] },
{ $lt: ["$timespent", 650] }
] }, "range 450-650", "" ]
}]
}
}},
{ $group: { _id: "$range", count: { $sum: 1 } } },
{ $sort: { "_id": 1 } },
]);
and the result is:
{
"result" : [
{
"_id" : "range 0-250",
"count" : 2
},
{
"_id" : "range 251-450",
"count" : 2
},
{
"_id" : "range 450-650",
"count" : 1
}
],
"ok" : 1
}
In order to generate the aggregate command, you have to build the "range" projection as a JSON object ( or you could generate a string and then use JSON.parse(string) )
The generator looks like this:
var ranges = [ 0, 250, 450, 650 ];
var rangeProj = {
"$concat": []
};
for (i = 1; i < ranges.length; i++) {
rangeProj.$concat.push({
$cond: {
if: {
$and: [{
$gte: [ "$timespent", ranges[i-1] ]
}, {
$lt: [ "$timespent", ranges[i] ]
}]
},
then: "range " + ranges[i-1] + "-" + ranges[i],
else: ""
}
})
}
db.xx.aggregate([{
$project: { "_id": 0, "range": rangeProj }
}, {
$group: { _id: "$range", count: { $sum: 1 } }
}, {
$sort: { "_id": 1 }
}]);
which will return the same result as above.
Starting from MongoDB 3.4 we can use the $switch
operator to perform a multi-switch statement in the $project
stage.
The $group
pipeline operator group the documents by "range" and return the "count" for each group using the $sum
accumulator operator.
db.collection.aggregate(
[
{ "$project": {
"range": {
"$switch": {
"branches": [
{
"case": { "$lte": [ "$timespent", 250 ] },
"then": "0-250"
},
{
"case": {
"$and": [
{ "$gt": [ "$timespent", 250 ] },
{ "$lte": [ "$timespent", 450 ] }
]
},
"then": "251-450"
},
{
"case": {
"$and": [
{ "$gt": [ "$timespent", 450 ] },
{ "$lte": [ "$timespent", 650 ] }
]
},
"then": "451-650"
}
],
"default": "650+"
}
}
}},
{ "$group": {
"_id": "$range",
"count": { "$sum": 1 }
}}
]
)
With the following documents in our collection,
{ "_id" : ObjectId("514919fb23700b41723f94dc"), "name" : "A", "timespent" : 100 },
{ "_id" : ObjectId("514919fb23700b41723f94dd"), "name" : "B", "timespent" : 200 },
{ "_id" : ObjectId("514919fb23700b41723f94de"), "name" : "C", "timespent" : 300 },
{ "_id" : ObjectId("514919fb23700b41723f94df"), "name" : "D", "timespent" : 400 },
{ "_id" : ObjectId("514919fb23700b41723f94e0"), "name" : "E", "timespent" : 500 }
our query yields:
{ "_id" : "451-650", "count" : 1 }
{ "_id" : "251-450", "count" : 2 }
{ "_id" : "0-250", "count" : 2 }
We may want to add a $sort
stage to the pipeline sort our document by range but this will only sort the documents in lexicographic order because of the type of "range".