Newbetuts
.
New posts in metric-spaces
Distance between two points in different sets
general-topology
metric-spaces
Canonical metric on product of two complete metric spaces
real-analysis
general-topology
metric-spaces
complete-spaces
What is meant by gluing two metric spaces together?
general-topology
metric-spaces
quotient-spaces
What is a mathematical definition of the Maxwellian spacetime?
differential-geometry
metric-spaces
coordinate-systems
There is a set of continuous functions $f$ on [0, 1] with supremum metric (metric space). Proof that $\phi(f) = f(0) + f(1)$ is continous
continuity
metric-spaces
topological-vector-spaces
How to finish this proof about compact implies bounded
real-analysis
metric-spaces
Show that the discrete topology on $X$ is induced by the discrete metric
general-topology
metric-spaces
If every real valued continuous function on $X$ is uniformly continuous , then is every continuous function to any metric space uniformly continuous?
metric-spaces
continuity
uniform-continuity
Example of two open balls such that the one with the smaller radius contains the one with the larger radius.
general-topology
metric-spaces
examples-counterexamples
Motivation of generalizing the theory of metric spaces to the theory of topological spaces
general-topology
metric-spaces
soft-question
Finite union of compact sets is compact
general-topology
metric-spaces
compactness
Are there any different proof of the uncountability of $[0, 1]$?
real-analysis
elementary-set-theory
metric-spaces
How is $xy=1$ closed in $\Bbb{R}^2$?
general-topology
metric-spaces
Let $(X,d)$ be a compact metric space. Let $f: X \to X$ be such that $d(f(x),f(y)) = d(x,y)$ for all $x,y \in X$. Show that $f $ is onto (surjective).
general-topology
metric-spaces
Metric on $\Bbb{R}$
general-topology
metric-spaces
symmetric-groups
Prove that a compact metric space can be covered by open balls that don't overlap too much.
real-analysis
metric-spaces
compactness
$f:X \to Y $ is continuous on $X$ and $(X, d_1) $ is compact. Then $f:X\to Y$ is uniformly continuous on $X$
real-analysis
metric-spaces
solution-verification
proof-explanation
Show that any two closed and bounded interval are homeomorphic in $\mathbb{R}$
general-topology
continuity
metric-spaces
Where i am wrong? A question on uniformly continuous function in functional analysis.
real-analysis
functional-analysis
metric-spaces
solution-verification
proof-explanation
Triangle inequality for the distance between two sets
general-topology
analysis
reference-request
metric-spaces
Prev
Next