Newbetuts
.
New posts in extension-field
Elements of $\mathbb Q(2^{1/3})$
abstract-algebra
field-theory
galois-theory
extension-field
Proof that a finite separable extension has only finite many intermediate fields
abstract-algebra
field-theory
galois-theory
extension-field
Separability and tensor product of fields
abstract-algebra
commutative-algebra
galois-theory
extension-field
degree of a field extension
abstract-algebra
field-theory
extension-field
Geometric interpretation of different types of field extensions?
algebraic-geometry
field-theory
extension-field
splitting-field
Is there a field extension over the real numbers that is not the same as the field of complex numbers?
field-theory
extension-field
Can we always find a primitive element that is a square?
abstract-algebra
field-theory
extension-field
General way to determine $\mathbb{Q}(\gamma) = \mathbb{Q}(\alpha,\beta)$ given $\alpha$ and $\beta$
abstract-algebra
field-theory
extension-field
Transitivity of the discriminant of number fields
abstract-algebra
algebraic-number-theory
galois-theory
extension-field
For $L/K$, is $\mathcal{O}_L$ the integral closure of $\mathcal{O}_K$
abstract-algebra
algebraic-number-theory
extension-field
Field extensions of finite degree and primitive elements
abstract-algebra
field-theory
extension-field
minimal-polynomials
Which cyclotomic fields are different?
field-theory
extension-field
cyclotomic-fields
Can we extend the real numbers by using hexagonal coordinates on a plane?
complex-numbers
extension-field
A finite field extension of $\mathbb R$ is either $\mathbb R$ or isomorphic to $\mathbb C$
abstract-algebra
field-theory
extension-field
Is it possible to construct a field larger than the complex numbers?
abstract-algebra
extension-field
The real numbers are a field extension of the rationals?
field-theory
extension-field
Given a proper field extension $L/K$, can we have $L\cong K$? [duplicate]
abstract-algebra
field-theory
extension-field
ring-isomorphism
galois group of finite field [duplicate]
field-theory
galois-theory
extension-field
galois-extensions
What is the degree of a real closure of an ordered field?
field-theory
cardinals
model-theory
extension-field
ordered-fields
Determine the degree of the splitting field for $f(x)=x^{15}-1$.
abstract-algebra
field-theory
finite-fields
extension-field
cyclotomic-polynomials
Prev
Next