Newbetuts
.
New posts in combinatorics
Is it possible to cover a $70\times70$ torus (or klein bottle/projective plane) with $24$ squares with side length $1,2,3\ldots,24$?
combinatorics
tiling
Product of binomial coefficient as a basis
combinatorics
vector-spaces
binomial-coefficients
How many arrangements of a (generalized) deck of (generalised) cards have pairs in them?
probability
combinatorics
Dimension of the space of algebraic Riemann curvature tensors
linear-algebra
combinatorics
differential-geometry
representation-theory
Given $n$ identical resistors $R$, find combinations of series, parallel, and series-parallel arrangements
combinatorics
Proving an identity for complete homogenous symmetric polynomials
combinatorics
symmetric-polynomials
symmetric-functions
algebraic-combinatorics
Let $x$ be an irrational number. Prove that there exist infinitely many rational numbers $\dfrac pq$ that satisfy the following
combinatorics
How to win Matt Parker's jackpot - finding the median of the following distribution
combinatorics
statistics
probability-distributions
recreational-mathematics
median
Probability that all bins contain strictly more than one ball?
probability
combinatorics
balls-in-bins
Direct proof of Gelfand-Zetlin identity
combinatorics
A proof of the identity $ \sum_{k = 0}^{n} \frac{(-1)^{k} \binom{n}{k}}{x + k} = \frac{n!}{(x + 0) (x + 1) \cdots (x + n)} $.
combinatorics
summation
binomial-coefficients
Minimum steps adding edges to form a complete graph
combinatorics
graph-theory
recreational-mathematics
Arrangements question.
combinatorics
Euler function and sums
combinatorics
number-theory
elementary-number-theory
totient-function
Domino Tiling 8 x 8 grid proof
combinatorics
graph-theory
chessboard
Coefficient of $x^{n-2}$ in $(x-1)(x-2)(x-3)\dotsm(x-n)$
combinatorics
binomial-theorem
Reverse Littlewood-Offord problem: lower bound for the number of choices of signs such that $|\pm a_1\dots\pm a_n| \leq \max|a_i|.$
combinatorics
inequality
Old USAMO combinatorics problem about distribution of members into committees containing a fixed number of members.
combinatorics
contest-math
What is the best way to partition the $4$-subsets of $\{1,2,3,\dots,n\}$?
combinatorics
coloring
set-partition
extremal-combinatorics
How would you go about learning the combination of coins the man has?
probability
combinatorics
statistics
discrete-mathematics
puzzle
Prev
Next