How do I do word Stemming or Lemmatization?

Solution 1:

If you know Python, The Natural Language Toolkit (NLTK) has a very powerful lemmatizer that makes use of WordNet.

Note that if you are using this lemmatizer for the first time, you must download the corpus prior to using it. This can be done by:

>>> import nltk
>>> nltk.download('wordnet')

You only have to do this once. Assuming that you have now downloaded the corpus, it works like this:

>>> from nltk.stem.wordnet import WordNetLemmatizer
>>> lmtzr = WordNetLemmatizer()
>>> lmtzr.lemmatize('cars')
'car'
>>> lmtzr.lemmatize('feet')
'foot'
>>> lmtzr.lemmatize('people')
'people'
>>> lmtzr.lemmatize('fantasized','v')
'fantasize'

There are other lemmatizers in the nltk.stem module, but I haven't tried them myself.

Solution 2:

I use stanford nlp to perform lemmatization. I have been stuck up with a similar problem in the last few days. All thanks to stackoverflow to help me solve the issue .

import java.util.*; 
import edu.stanford.nlp.pipeline.*;
import edu.stanford.nlp.ling.*; 
import edu.stanford.nlp.ling.CoreAnnotations.*;  

public class example
{
    public static void main(String[] args)
    {
        Properties props = new Properties(); 
        props.put("annotators", "tokenize, ssplit, pos, lemma"); 
        pipeline = new StanfordCoreNLP(props, false);
        String text = /* the string you want */; 
        Annotation document = pipeline.process(text);  

        for(CoreMap sentence: document.get(SentencesAnnotation.class))
        {    
            for(CoreLabel token: sentence.get(TokensAnnotation.class))
            {       
                String word = token.get(TextAnnotation.class);      
                String lemma = token.get(LemmaAnnotation.class); 
                System.out.println("lemmatized version :" + lemma);
            }
        }
    }
}

It also might be a good idea to use stopwords to minimize output lemmas if it's used later in classificator. Please take a look at coreNlp extension written by John Conwell.

Solution 3:

I tried your list of terms on this snowball demo site and the results look okay....

  • cats -> cat
  • running -> run
  • ran -> ran
  • cactus -> cactus
  • cactuses -> cactus
  • community -> communiti
  • communities -> communiti

A stemmer is supposed to turn inflected forms of words down to some common root. It's not really a stemmer's job to make that root a 'proper' dictionary word. For that you need to look at morphological/orthographic analysers.

I think this question is about more or less the same thing, and Kaarel's answer to that question is where I took the second link from.

Solution 4:

The stemmer vs lemmatizer debates goes on. It's a matter of preferring precision over efficiency. You should lemmatize to achieve linguistically meaningful units and stem to use minimal computing juice and still index a word and its variations under the same key.

See Stemmers vs Lemmatizers

Here's an example with python NLTK:

>>> sent = "cats running ran cactus cactuses cacti community communities"
>>> from nltk.stem import PorterStemmer, WordNetLemmatizer
>>>
>>> port = PorterStemmer()
>>> " ".join([port.stem(i) for i in sent.split()])
'cat run ran cactu cactus cacti commun commun'
>>>
>>> wnl = WordNetLemmatizer()
>>> " ".join([wnl.lemmatize(i) for i in sent.split()])
'cat running ran cactus cactus cactus community community'

Solution 5:

Martin Porter's official page contains a Porter Stemmer in PHP as well as other languages.

If you're really serious about good stemming though you're going to need to start with something like the Porter Algorithm, refine it by adding rules to fix incorrect cases common to your dataset, and then finally add a lot of exceptions to the rules. This can be easily implemented with key/value pairs (dbm/hash/dictionaries) where the key is the word to look up and the value is the stemmed word to replace the original. A commercial search engine I worked on once ended up with 800 some exceptions to a modified Porter algorithm.