Proving that $1$- and $2D$ simple symmetric random walks return to the origin with probability $1$
How does one prove that a simple (steps of length $1$ in directions parallel to the axes) symmetric (each possible direction is equally likely) random walk in $1$ or $2$ dimensions returns to the origin with probability $1$?
Edit: note that while returning to the origin is guaranteed $(p = 1)$ in $1$ and $2$ dimensions, it is not guaranteed in higher dimensions; this means that something in a correct justification for the $1$- or $2D$ cases must fail to extend to $3D$ $($or fail when the probability for each direction drops from $\frac{1}{4}$ to $\frac{1}{6})$.
See Durrett, Probability: Theory and Examples (link goes to online copy of the fourth edition; original defunct link). On p. 164 Durrett gives a proof that simple random walk is recurrent in two dimensions.
First find the probability that simple random walk in one dimension is at $0$ after $2n$ steps; this is clearly $\rho_1(2n) = \binom{2n}{n}/2^{2n}$, since $\binom{2n}{n}$ is the number of paths with $n$ right steps and $n$ left steps.
Next, the probability that simple random walk in two dimensions -- call this $\rho_2(2n)$ -- is at $0$ after $2n$ steps is the square of the previous probability. Consider the simple random walk which makes steps to the northeast, northwest, southeast, and southwest with equal probability. The projections of this walk onto the x- and y-axes are independent simple random walks in one dimension. Rotating and rescaling gives the "usual" SRW in two dimensions (with steps north, east, south and west) and doesn't change the probability of being at $0$.
So $\rho_2(2n) = \left(\binom{2n}{n}/2^{2n}\right)^2$. This is asymptotic to $1/(\pi n)$, and the expected number of returns to the origin is the $\sum_{n \geq 1} \rho_2(2n)$, so the expected number of returns to the origin is infinite. It's not hard to show (and is in fact true, but the proof is unenlightening so I'll leave it to Durrett) that in this case the probability of eventually returning to the origin is $1$.
I'll try it for 2D and then we can get 1D as a corollary [excercise!]...
This is the only proof I know of, there may be a more intuitive (and less messy without tex!) proof out there, but I like this one- it uses generating functions in a really nifty way.
Consider the probability of being at the origin after 2n steps (notice we cannot return in an odd number of steps):
$u_0=1$
$u_{2n} = p(n,n,0,0)+ p(n-1,n-1,1,1)+...+p(n-k,n-k,k,k)+...+p(0,0,n,n)$ (when $n\neq0$)
Here $p(u,d,l,r)$ is the probability of the first 2n steps being u up, d down, l left and r right in any order. Each order has probability $\frac{1}{4^{2n}}$, and there are $\frac{(2n)!}{u!d!l!r!}$ distinct orders, giving $p(n-k,n-k,k,k)=\frac{1}{4^{2n}} \frac{(2n)!}{(n-k)!(n-k)!k!k!}$
Now, since $(2n)!=n! n! \binom{2n}{n}$ we have $p(n-k,n-k,k,k)=\frac{1}{4^{2n}} \binom{2n}{n} \binom{n}{k}^2$ giving
$u_{2n}= \frac{1}{4^{2n}} \Sigma_k \binom{2n}{n} \binom{n}{k}^2$ which, by one of those silly binomial results, can be contracted to
$u_{2n}= \frac{1}{4^{2n}} \binom{2n}{n}^2$
Let us put that in our back pocket for now and consider instead the probability of first returning after 2n steps $f_{2n}$ --- this is rather difficult to tackle directly but we can make ourselves a cunning little formula involving it, jazz out some generating function fun and seal the deal with some.
The formula in question is: $u_{2n}= f_2 u_{2n-2}+ f_4 u_{2n-4} +....+f_{2n-2}u_{2} + f_{2n}$
Which we shall not prove so much as explain: to return to the origin after 2n steps (LHS) you must either first return after 2 steps and do a 'return to the origin in 2n-2 steps walk' (first term RHS) or first return after 4 steps and do a 'return to the origin in 2n-4 steps walk' (2nd term) or... or first return after 2n-2 steps and do a 'return to the origin in 2 steps walk or first return to the origin after 2n steps.
We shall now tweak our formula just a tiny bit so it has the right symmetry properties for what is to come, we do this by adding $f_0=0$ and $u_0=1$ to give
$u_{2n}= f_0 u_{2n}+ f_2 u_{2n-2}+ f_4 u_{2n-4} +....+f_{2n-2}u_{2} + f_{2n}u_0$
Which is secretly a statement about generating functions (this is the sweet bit!), see look at the generating functions of $u_n$, $f_n$:
$U(x)= \Sigma_m u_{2m} x^{2m}$, $F(x)= \Sigma_m f_{2m} x^{2m}$
We see:
$U(x)= 1+ U(x)F(x)$
(where the '1+' is to compensate for the fact that $u_0$ does not appear in the product) Rearranging to:
$F(x)= \frac{U(x)-1}{U(x)}$
Observe that the probability of return is $\Sigma f_n= F(1)$, which comes out as 1 because $U(1)$ diverges by some tedious stirlings formula bounds that I forget.
Edit: Until Tex comes online, this is pretty unreadable, so here's a link to some lecture notes I found with the same proof (and, fortunately, the same notation!). Enjoy!
Edit$^2$: Hooray, Tex has come online!!! Enjoy.
Let $X_n = 1$ if at the $n^{th}$ step we are back at origin else it is $0$
$\mathbb{E}(X_n)$ is the probability of return after $n$ steps = $P_n$
Let $X = \displaystyle \sum_{n=1}^{\infty} X_n$ counts the number of returns
$\mathbb{E}(X) = \displaystyle \sum_{n=1}^{\infty} \mathbb{E}(X_n)$
Expected number of returns = $\mathbb{E}(X) = \displaystyle \sum_{n=1}^{\infty} P_n$
Note that $P_n = 0$ if $n$ is odd
Let $\rho$ be the probability that the random walk returns (at-least once) to $0$
$\rho_k$ be the probability that we return exactly $k$ times to the origin
$\rho_0 = 1 -\rho$ and in general, $\rho_k = \rho^k (1- \rho)$
$\mathbb{E}(X) = \displaystyle \sum_{k=0}^{\infty} k \rho^k (1-\rho) = \frac{\rho}{1-\rho}$ if $\rho < 1$
Hence, from the above we see that,
If $\rho < 1$, then $\mathbb{E}$(Number of returns) is finite i.e. $\displaystyle \sum_{n=1}^{\infty} p_n < \infty$
If $\rho = 1$, then $\mathbb{E}$(Number of returns) is infinite i.e. $\displaystyle \sum_{n=1}^{\infty} p_n = \infty$
In one dimensions, we have $p_{2n+1} = 0$ and $p_{2n} = \frac1{2^{2n}} \binom{2n}{n}$. Note that the middle binomial coefficient is the largest and hence $\frac1{2^{2n}} \binom{2n}{n} \geq \frac1{2n+1}$ and hence the $\displaystyle \sum_{n=1}^{\infty} p_{2n}$ diverges
Or we could use the stirling's formula to get a better estimate and get $p_{2n} \approx \frac{c}{\sqrt{n}}$ and hence the sum diverges
In two dimensions, we have $p_{2n} = \frac1{4^{2n}} \displaystyle \sum_{k=0}^{n} \binom{2n}{k} \binom{2n-k}{k} \binom{2n-2k}{n-k} = \frac1{4^{2n}} \displaystyle \sum_{k=0}^{n} \frac{(2n)!}{k! k! (n-k)! (n-k)!}$
Note the maximum is at $k = \frac{n}{2}$ and by Central Limit Theorem you can approximately say that intervals of length $\sim \sqrt{n}$ around $\frac{n}{2}$ where this is of largest size
Hence, each such $k$ contributes $\sim \frac{\sqrt{n}}{(\sqrt{n})^4} = \frac1{n^{3/2}}$ (By stirling's formula).
Number of $k$ is of the order of $\sqrt{n}$ and hence $p_{2n} \sim \frac1{n}$ and so again $p_n \rightarrow \infty$ since the harmonic sum diverges
In general, $p_n$ is about the size $\frac{c}{n^{d/2}}$ so $\displaystyle \sum_{n=1}^{\infty} p_n < \infty$ if $d > 2$. This is from the convergence and divergence of the p-series. $\displaystyle \sum \mathbb{E}(X_n) < \infty \iff \mathbb{E}(X) < \infty \iff \rho < 1 \implies$ Probability(return infinitely often) = 0
$P =$ probability that if you are at $1$, you will return to $0$.
$Q =$ probability that if you are at $2$ you will return to $0$.
Assuming you start at $0$, you will either go to $1$ or to $-1$, so finding the probability $P$ for $1$ is the same as the probability if you go to $-1$.
From the point $1$, there are $2$ possibilities:
1) you can go immediately back to $0$
2) you can go to $2$.
So, $P = \frac{1}{2} +\frac{1}{2} * Q$
What is $Q$:
From the point $2$, you have $2$ possibilities:
1) You can go even further out.
2) You can return to $0$. What it the probability you will return to 0?
Well, the probability that you will return to $1$ is $P$ because returning to $1$ from $2$ is the same probability as returning to $0$ from $1$. And, you will have to return to $1$ before you can return to $0$.
Therefore:
\begin{align} P & = \frac{1}{2} + \frac{1}{2} P^2\\
2P & = 1+P^2\\
P^2 – 2P + 1 & = 0\\
(P – 1) (P – 1) & = 0\\
P & = 1.\end{align}
I'll do 1D.
1D walks are building binary strings, 010101, etc.
Say take six steps. Then 111111 is just as likely as 101010.
However, how many of the possible sequences have six ones? 1. How many of the possibly sequences have three ones and three zeros? Much more.
That number is called multiplicity, and it grows mighty fast. In the limit its log becomes Shannon entropy.
Sequences are equally likely, but combinations are not.
In the limit the combinations with maximum entropy are going dominate all the rest. So the walk is going to have gone an equal number of right and left steps...almost surely.