Comparing two collections for equality irrespective of the order of items in them

I would like to compare two collections (in C#), but I'm not sure of the best way to implement this efficiently.

I've read the other thread about Enumerable.SequenceEqual, but it's not exactly what I'm looking for.

In my case, two collections would be equal if they both contain the same items (no matter the order).

Example:

collection1 = {1, 2, 3, 4};
collection2 = {2, 4, 1, 3};

collection1 == collection2; // true

What I usually do is to loop through each item of one collection and see if it exists in the other collection, then loop through each item of the other collection and see if it exists in the first collection. (I start by comparing the lengths).

if (collection1.Count != collection2.Count)
    return false; // the collections are not equal

foreach (Item item in collection1)
{
    if (!collection2.Contains(item))
        return false; // the collections are not equal
}

foreach (Item item in collection2)
{
    if (!collection1.Contains(item))
        return false; // the collections are not equal
}

return true; // the collections are equal

However, this is not entirely correct, and it's probably not the most efficient way to do compare two collections for equality.

An example I can think of that would be wrong is:

collection1 = {1, 2, 3, 3, 4}
collection2 = {1, 2, 2, 3, 4}

Which would be equal with my implementation. Should I just count the number of times each item is found and make sure the counts are equal in both collections?


The examples are in some sort of C# (let's call it pseudo-C#), but give your answer in whatever language you wish, it does not matter.

Note: I used integers in the examples for simplicity, but I want to be able to use reference-type objects too (they do not behave correctly as keys because only the reference of the object is compared, not the content).


Solution 1:

It turns out Microsoft already has this covered in its testing framework: CollectionAssert.AreEquivalent

Remarks

Two collections are equivalent if they have the same elements in the same quantity, but in any order. Elements are equal if their values are equal, not if they refer to the same object.

Using reflector, I modified the code behind AreEquivalent() to create a corresponding equality comparer. It is more complete than existing answers, since it takes nulls into account, implements IEqualityComparer and has some efficiency and edge case checks. plus, it's Microsoft :)

public class MultiSetComparer<T> : IEqualityComparer<IEnumerable<T>>
{
    private readonly IEqualityComparer<T> m_comparer;
    public MultiSetComparer(IEqualityComparer<T> comparer = null)
    {
        m_comparer = comparer ?? EqualityComparer<T>.Default;
    }

    public bool Equals(IEnumerable<T> first, IEnumerable<T> second)
    {
        if (first == null)
            return second == null;

        if (second == null)
            return false;

        if (ReferenceEquals(first, second))
            return true;

        if (first is ICollection<T> firstCollection && second is ICollection<T> secondCollection)
        {
            if (firstCollection.Count != secondCollection.Count)
                return false;

            if (firstCollection.Count == 0)
                return true;
        }

        return !HaveMismatchedElement(first, second);
    }

    private bool HaveMismatchedElement(IEnumerable<T> first, IEnumerable<T> second)
    {
        int firstNullCount;
        int secondNullCount;

        var firstElementCounts = GetElementCounts(first, out firstNullCount);
        var secondElementCounts = GetElementCounts(second, out secondNullCount);

        if (firstNullCount != secondNullCount || firstElementCounts.Count != secondElementCounts.Count)
            return true;

        foreach (var kvp in firstElementCounts)
        {
            var firstElementCount = kvp.Value;
            int secondElementCount;
            secondElementCounts.TryGetValue(kvp.Key, out secondElementCount);

            if (firstElementCount != secondElementCount)
                return true;
        }

        return false;
    }

    private Dictionary<T, int> GetElementCounts(IEnumerable<T> enumerable, out int nullCount)
    {
        var dictionary = new Dictionary<T, int>(m_comparer);
        nullCount = 0;

        foreach (T element in enumerable)
        {
            if (element == null)
            {
                nullCount++;
            }
            else
            {
                int num;
                dictionary.TryGetValue(element, out num);
                num++;
                dictionary[element] = num;
            }
        }

        return dictionary;
    }

    public int GetHashCode(IEnumerable<T> enumerable)
    {
        if (enumerable == null) throw new 
            ArgumentNullException(nameof(enumerable));

        int hash = 17;

        foreach (T val in enumerable)
            hash ^= (val == null ? 42 : m_comparer.GetHashCode(val));

        return hash;
    }
}

Sample usage:

var set = new HashSet<IEnumerable<int>>(new[] {new[]{1,2,3}}, new MultiSetComparer<int>());
Console.WriteLine(set.Contains(new [] {3,2,1})); //true
Console.WriteLine(set.Contains(new [] {1, 2, 3, 3})); //false

Or if you just want to compare two collections directly:

var comp = new MultiSetComparer<string>();
Console.WriteLine(comp.Equals(new[] {"a","b","c"}, new[] {"a","c","b"})); //true
Console.WriteLine(comp.Equals(new[] {"a","b","c"}, new[] {"a","b"})); //false

Finally, you can use your an equality comparer of your choice:

var strcomp = new MultiSetComparer<string>(StringComparer.OrdinalIgnoreCase);
Console.WriteLine(strcomp.Equals(new[] {"a", "b"}, new []{"B", "A"})); //true

Solution 2:

A simple and fairly efficient solution is to sort both collections and then compare them for equality:

bool equal = collection1.OrderBy(i => i).SequenceEqual(
                 collection2.OrderBy(i => i));

This algorithm is O(N*logN), while your solution above is O(N^2).

If the collections have certain properties, you may be able to implement a faster solution. For example, if both of your collections are hash sets, they cannot contain duplicates. Also, checking whether a hash set contains some element is very fast. In that case an algorithm similar to yours would likely be fastest.

Solution 3:

Create a Dictionary "dict" and then for each member in the first collection, do dict[member]++;

Then, loop over the second collection in the same way, but for each member do dict[member]--.

At the end, loop over all of the members in the dictionary:

    private bool SetEqual (List<int> left, List<int> right) {

        if (left.Count != right.Count)
            return false;

        Dictionary<int, int> dict = new Dictionary<int, int>();

        foreach (int member in left) {
            if (dict.ContainsKey(member) == false)
                dict[member] = 1;
            else
                dict[member]++;
        }

        foreach (int member in right) {
            if (dict.ContainsKey(member) == false)
                return false;
            else
                dict[member]--;
        }

        foreach (KeyValuePair<int, int> kvp in dict) {
            if (kvp.Value != 0)
                return false;
        }

        return true;

    }

Edit: As far as I can tell this is on the same order as the most efficient algorithm. This algorithm is O(N), assuming that the Dictionary uses O(1) lookups.