Median / quantiles within PySpark groupBy
I would like to calculate group quantiles on a Spark dataframe (using PySpark). Either an approximate or exact result would be fine. I prefer a solution that I can use within the context of groupBy
/ agg
, so that I can mix it with other PySpark aggregate functions. If this is not possible for some reason, a different approach would be fine as well.
This question is related but does not indicate how to use approxQuantile
as an aggregate function.
I also have access to the percentile_approx
Hive UDF but I don't know how to use it as an aggregate function.
For the sake of specificity, suppose I have the following dataframe:
from pyspark import SparkContext
import pyspark.sql.functions as f
sc = SparkContext()
df = sc.parallelize([
['A', 1],
['A', 2],
['A', 3],
['B', 4],
['B', 5],
['B', 6],
]).toDF(('grp', 'val'))
df_grp = df.groupBy('grp').agg(f.magic_percentile('val', 0.5).alias('med_val'))
df_grp.show()
Expected result is:
+----+-------+
| grp|med_val|
+----+-------+
| A| 2|
| B| 5|
+----+-------+
Solution 1:
I guess you don't need it anymore. But will leave it here for future generations (i.e. me next week when I forget).
from pyspark.sql import Window
import pyspark.sql.functions as F
grp_window = Window.partitionBy('grp')
magic_percentile = F.expr('percentile_approx(val, 0.5)')
df.withColumn('med_val', magic_percentile.over(grp_window))
Or to address exactly your question, this also works:
df.groupBy('grp').agg(magic_percentile.alias('med_val'))
And as a bonus, you can pass an array of percentiles:
quantiles = F.expr('percentile_approx(val, array(0.25, 0.5, 0.75))')
And you'll get a list in return.
Solution 2:
Since you have access to percentile_approx
, one simple solution would be to use it in a SQL
command:
from pyspark.sql import SQLContext
sqlContext = SQLContext(sc)
df.registerTempTable("df")
df2 = sqlContext.sql("select grp, percentile_approx(val, 0.5) as med_val from df group by grp")
Solution 3:
(UPDATE: now it is possible, see accepted answer above)
Unfortunately, and to the best of my knowledge, it seems that it is not possible to do this with "pure" PySpark commands (the solution by Shaido provides a workaround with SQL), and the reason is very elementary: in contrast with other aggregate functions, such as mean
, approxQuantile
does not return a Column
type, but a list.
Let's see a quick example with your sample data:
spark.version
# u'2.2.0'
import pyspark.sql.functions as func
from pyspark.sql import DataFrameStatFunctions as statFunc
# aggregate with mean works OK:
df_grp_mean = df.groupBy('grp').agg(func.mean(df['val']).alias('mean_val'))
df_grp_mean.show()
# +---+--------+
# |grp|mean_val|
# +---+--------+
# | B| 5.0|
# | A| 2.0|
# +---+--------+
# try aggregating by median:
df_grp_med = df.groupBy('grp').agg(statFunc(df).approxQuantile('val', [0.5], 0.1))
# AssertionError: all exprs should be Column
# mean aggregation is a Column, but median is a list:
type(func.mean(df['val']))
# pyspark.sql.column.Column
type(statFunc(df).approxQuantile('val', [0.5], 0.1))
# list
I doubt that a window-based approach will make any difference, since as I said the underlying reason is a very elementary one.
See also my answer here for some more details.