Efficiency of branching in shaders
If the condition is uniform (i.e. constant for the entire pass), then the branch is essentially free because the framework will essentially compile two versions of the shader (branch taken and not) and choose one of these for the entire pass based on your input variable. In this case, definitely go for the if
statement as it will make your shader faster.
If the condition varies per vertex/pixel, then it can indeed degrade performance and older shader models don't even support dynamic branching.
Unfortunately, I think the real answer here is to do practical testing with a performance analyser of your specific case, on your target hardware. Particularly given that it sounds like you're at project optimisation stage; this is the only way to take into account the fact that hardware changes frequently and the nature of the specific shader.
On a CPU, if you get a mispredicted branch, you'll cause a pipeline flush and since CPU pipelines are so deep, you'll effectively lose something in the order of 20 or more cycles. On the GPU things a little different; the pipeline are likely to be far shallower, but there's no branch prediction and all of the shader code will be in fast memory -- but that's not the real difference.
It's difficult to know the exact details of everything that's going on, because nVidia and ATI are relatively tight-lipped, but the key thing is that GPUs are made for massively parallel execution. There are many asynchronous shader cores, but each core is again designed to run multiple threads. My understanding is that each core expects to run the same instruction on all it's threads on any given cycle (nVidia calls this collection of threads a "warp").
In this case, a thread might represent a vertex, a geometry element or a pixel/fragment and a warp is a collection of about 32 of those. For pixels, they're likely to be pixels that are close to each other on screen. The problem is, if within one warp, different threads make different decisions at the conditional jump, the warp has diverged and is no longer running the same instruction for every thread. The hardware can handle this, but it's not entirely clear (to me, at least) how it does so. It's also likely to be handled slightly differently for each successive generation of cards. The newest, most general CUDA/compute-shader friendly nVidias might have the best implementation; older cards might have a poorer implementation. The worse case is you may find many threads executing both sides of if/else statements.
One of the great tricks with shaders is learning how to leverage this massively parallel paradigm. Sometimes that means using extra passes, temporary offscreen buffers and stencil buffers to push logic up out of the shaders and onto the CPU. Sometimes an optimisation may appear to burn more cycles, but it could actually be reducing some hidden overhead.
Also note that you can explicitly mark if statements in DirectX shaders as [branch] or [flatten]. The flatten style gives you the right result, but always executes all in the instructions. If you don't explicitly choose one, the compiler can choose one for you -- and may pick [flatten], which is no good for your example.
One thing to remember is that if you jump over the first texture lookup, this will confuse the hardware's texture coordinate derivative math. You'll get compiler errors and it's best not to do so, otherwise you might miss out on some of the better texturing support.
In many cases the both branches could be calculated and mixed by condition as interpolator. That approach works much faster than branch. Could be used on CPU also. For instance:
...
vec3 c = vec3(1.0, 0.0, 0.0);
if (a == b)
c = vec3(0.0, 1.0, 0.0);
could be replaced by:
vec3 c = mix(vec3(1.0, 0.0, 0.0), vec3(0.0, 1.0, 0.0), (a == b));
...
Here's a real world performance benchmark on a kindle Fire:
In the fragment shader...
This runs at 20fps:
lowp vec4 a = vec4(0.0, 0.0, 0.0, 0.0);
if (a.r == 0.0)
gl_FragColor = texture2D ( texture1, TextureCoordOut );
This runs at 60fps:
gl_FragColor = texture2D ( texture1, TextureCoordOut );