Numpy element-wise dot product
is there an elegant, numpy way to apply the dot product elementwise? Or how can the below code be translated into a nicer version?
m0 # shape (5, 3, 2, 2)
m1 # shape (5, 2, 2)
r = np.empty((5, 3, 2, 2))
for i in range(5):
for j in range(3):
r[i, j] = np.dot(m0[i, j], m1[i])
Thanks in advance!
Solution 1:
Approach #1
Use np.einsum
-
np.einsum('ijkl,ilm->ijkm',m0,m1)
Steps involved :
Keep the first axes from the inputs aligned.
Lose the last axis from
m0
against second one fromm1
in sum-reduction.Let remaining axes from
m0
andm1
spread-out/expand with elementwise multiplications in an outer-product fashion.
Approach #2
If you are looking for performance and with the axis of sum-reduction having a smaller length, you are better off with one-loop and using matrix-multiplication
with np.tensordot
, like so -
s0,s1,s2,s3 = m0.shape
s4 = m1.shape[-1]
r = np.empty((s0,s1,s2,s4))
for i in range(s0):
r[i] = np.tensordot(m0[i],m1[i],axes=([2],[0]))
Approach #3
Now, np.dot
could be efficiently used on 2D inputs for some further performance boost. So, with it, the modified version, though a bit longer one, but hopefully the most performant one would be -
s0,s1,s2,s3 = m0.shape
s4 = m1.shape[-1]
m0.shape = s0,s1*s2,s3 # Get m0 as 3D for temporary usage
r = np.empty((s0,s1*s2,s4))
for i in range(s0):
r[i] = m0[i].dot(m1[i])
r.shape = s0,s1,s2,s4
m0.shape = s0,s1,s2,s3 # Put m0 back to 4D
Runtime test
Function definitions -
def original_app(m0, m1):
s0,s1,s2,s3 = m0.shape
s4 = m1.shape[-1]
r = np.empty((s0,s1,s2,s4))
for i in range(s0):
for j in range(s1):
r[i, j] = np.dot(m0[i, j], m1[i])
return r
def einsum_app(m0, m1):
return np.einsum('ijkl,ilm->ijkm',m0,m1)
def tensordot_app(m0, m1):
s0,s1,s2,s3 = m0.shape
s4 = m1.shape[-1]
r = np.empty((s0,s1,s2,s4))
for i in range(s0):
r[i] = np.tensordot(m0[i],m1[i],axes=([2],[0]))
return r
def dot_app(m0, m1):
s0,s1,s2,s3 = m0.shape
s4 = m1.shape[-1]
m0.shape = s0,s1*s2,s3 # Get m0 as 3D for temporary usage
r = np.empty((s0,s1*s2,s4))
for i in range(s0):
r[i] = m0[i].dot(m1[i])
r.shape = s0,s1,s2,s4
m0.shape = s0,s1,s2,s3 # Put m0 back to 4D
return r
Timings and verification -
In [291]: # Inputs
...: m0 = np.random.rand(50,30,20,20)
...: m1 = np.random.rand(50,20,20)
...:
In [292]: out1 = original_app(m0, m1)
...: out2 = einsum_app(m0, m1)
...: out3 = tensordot_app(m0, m1)
...: out4 = dot_app(m0, m1)
...:
...: print np.allclose(out1, out2)
...: print np.allclose(out1, out3)
...: print np.allclose(out1, out4)
...:
True
True
True
In [293]: %timeit original_app(m0, m1)
...: %timeit einsum_app(m0, m1)
...: %timeit tensordot_app(m0, m1)
...: %timeit dot_app(m0, m1)
...:
100 loops, best of 3: 10.3 ms per loop
10 loops, best of 3: 31.3 ms per loop
100 loops, best of 3: 5.12 ms per loop
100 loops, best of 3: 4.06 ms per loop