Count how many values in some cells of a row are not NA (in R)

Solution 1:

You can use is.na() over the selected columns, then rowSums() the result:

library(stringr)
df <- data_frame(
  id = 1:10
  , name = fruit[1:10]
  , word1 = c(words[1:5],NA,words[7:10])
  , word2 = words[11:20]
  , word3 = c(NA,NA,NA,words[25],NA,NA,words[32],NA,NA,words[65]))

df$word_count <- rowSums( !is.na( df [,3:5]))

df
      id         name    word1     word2   word3 n_words
   <int>        <chr>    <chr>     <chr>   <chr>   <dbl>
1      1        apple        a    actual    <NA>       2
2      2      apricot     able       add    <NA>       2
3      3      avocado    about   address    <NA>       2
4      4       banana absolute     admit   agree       3
5      5  bell pepper   accept advertise    <NA>       2
6      6     bilberry     <NA>    affect    <NA>       1
7      7   blackberry  achieve    afford alright       3
8      8 blackcurrant   across     after    <NA>       2
9      9 blood orange      act afternoon    <NA>       2
10    10    blueberry   active     again   awful       3

Edit

Using dplyr you could do this:

df %>% 
    select(3:5) %>% 
    is.na %>% 
    `!` %>% 
    rowSums

Solution 2:

library(dplyr)
library(stringr)

df  <- data_frame(
  id = 1:10
  , name = fruit[1:10]
  , word1 = c(words[1:5],NA,words[7:10])
  , word2 = words[11:20]
  , word3 = c(NA,NA,NA,words[25],NA,NA,words[32],NA,NA,words[65])
) 

library(purrr)
# Rowwise sum of NAs
df %>% by_row(~ sum(is.na(.)), .collate = 'cols')

# Rowwise sum of non-NAs for word columns
df %>% 
  select(starts_with('word')) %>% 
  by_row(~ sum(!is.na(.)), .collate = 'cols')