Upacking a list to select multiple columns from a spark data frame
I have a spark data frame df
. Is there a way of sub selecting a few columns using a list of these columns?
scala> df.columns
res0: Array[String] = Array("a", "b", "c", "d")
I know I can do something like df.select("b", "c")
. But suppose I have a list containing a few column names val cols = List("b", "c")
, is there a way to pass this to df.select? df.select(cols)
throws an error. Something like df.select(*cols)
as in python
Solution 1:
Use df.select(cols.head, cols.tail: _*)
Let me know if it works :)
Explanation from @Ben:
The key is the method signature of select:
select(col: String, cols: String*)
The cols:String*
entry takes a variable number of arguments. :_*
unpacks arguments so that they can be handled by this argument. Very similar to unpacking in python with *args
. See here and here for other examples.
Solution 2:
You can typecast String to spark column like this:
import org.apache.spark.sql.functions._
df.select(cols.map(col): _*)
Solution 3:
Another option that I've just learnt.
import org.apache.spark.sql.functions.col
val columns = Seq[String]("col1", "col2", "col3")
val colNames = columns.map(name => col(name))
val df = df.select(colNames:_*)
Solution 4:
First convert the String Array to a List of Spark dataset Column type as below
String[] strColNameArray = new String[]{"a", "b", "c", "d"};
List<Column> colNames = new ArrayList<>();
for(String strColName : strColNameArray){
colNames.add(new Column(strColName));
}
then convert the List using JavaConversions functions within the select statement as below. You need the following import statement.
import scala.collection.JavaConversions;
Dataset<Row> selectedDF = df.select(JavaConversions.asScalaBuffer(colNames ));