How to split data into trainset and testset randomly?

I have a large dataset and want to split it into training(50%) and testing set(50%).

Say I have 100 examples stored the input file, each line contains one example. I need to choose 50 lines as training set and 50 lines testing set.

My idea is first generate a random list with length 100 (values range from 1 to 100), then use the first 50 elements as the line number for the 50 training examples. The same with testing set.

This could be achieved easily in Matlab

fid=fopen(datafile);
C = textscan(fid, '%s','delimiter', '\n');
plist=randperm(100);
for i=1:50
    trainstring = C{plist(i)};
    fprintf(train_file,trainstring);
end
for i=51:100
    teststring = C{plist(i)};
    fprintf(test_file,teststring);
end

But how could I accomplish this function in Python? I'm new to Python, and don't know whether I could read the whole file into an array, and choose certain lines.


Solution 1:

This can be done similarly in Python using lists, (note that the whole list is shuffled in place).

import random

with open("datafile.txt", "rb") as f:
    data = f.read().split('\n')

random.shuffle(data)

train_data = data[:50]
test_data = data[50:]

Solution 2:

from sklearn.model_selection import train_test_split
import numpy

with open("datafile.txt", "rb") as f:
   data = f.read().split('\n')
   data = numpy.array(data)  #convert array to numpy type array

   x_train ,x_test = train_test_split(data,test_size=0.5)       #test_size=0.5(whole_data)

Solution 3:

To answer @desmond.carros question, I modified the best answer as follows,

 import random
 file=open("datafile.txt","r")
 data=list()
 for line in file:
    data.append(line.split(#your preferred delimiter))
 file.close()
 random.shuffle(data)
 train_data = data[:int((len(data)+1)*.80)] #Remaining 80% to training set
 test_data = data[int((len(data)+1)*.80):] #Splits 20% data to test set

The code splits the entire dataset to 80% train and 20% test data

Solution 4:

You could also use numpy. When your data is stored in a numpy.ndarray:

import numpy as np
from random import sample
l = 100 #length of data 
f = 50  #number of elements you need
indices = sample(range(l),f)

train_data = data[indices]
test_data = np.delete(data,indices)

Solution 5:

sklearn.cross_validation is deprecated since version 0.18, instead you should use sklearn.model_selection as show below

from sklearn.model_selection import train_test_split
import numpy

with open("datafile.txt", "rb") as f:
   data = f.read().split('\n')
   data = numpy.array(data)  #convert array to numpy type array

   x_train ,x_test = train_test_split(data,test_size=0.5)       #test_size=0.5(whole_data)