Update index after sorting data-frame
Take the following data-frame:
x = np.tile(np.arange(3),3)
y = np.repeat(np.arange(3),3)
df = pd.DataFrame({"x": x, "y": y})
x y
0 0 0
1 1 0
2 2 0
3 0 1
4 1 1
5 2 1
6 0 2
7 1 2
8 2 2
I need to sort it by x
first, and only second by y
:
df2 = df.sort(["x", "y"])
x y
0 0 0
3 0 1
6 0 2
1 1 0
4 1 1
7 1 2
2 2 0
5 2 1
8 2 2
How can I change the index such that it is ascending again. I.e. how do I get this:
x y
0 0 0
1 0 1
2 0 2
3 1 0
4 1 1
5 1 2
6 2 0
7 2 1
8 2 2
I have tried the following. Unfortunately, it doesn't change the index at all:
df2.reindex(np.arange(len(df2.index)))
Solution 1:
You can reset the index using reset_index
to get back a default index of 0, 1, 2, ..., n-1 (and use drop=True
to indicate you want to drop the existing index instead of adding it as an additional column to your dataframe):
In [19]: df2 = df2.reset_index(drop=True)
In [20]: df2
Out[20]:
x y
0 0 0
1 0 1
2 0 2
3 1 0
4 1 1
5 1 2
6 2 0
7 2 1
8 2 2
Solution 2:
Since pandas 1.0.0 df.sort_values
has a new parameter ignore_index
which does exactly what you need:
In [1]: df2 = df.sort_values(by=['x','y'],ignore_index=True)
In [2]: df2
Out[2]:
x y
0 0 0
1 0 1
2 0 2
3 1 0
4 1 1
5 1 2
6 2 0
7 2 1
8 2 2