Pivot Tables or Group By for Pandas?

Here are couple of ways to reshape your data df

In [27]: df
Out[27]:
     Col X  Col Y
0  class 1  cat 1
1  class 2  cat 1
2  class 3  cat 2
3  class 2  cat 3

1) Using pd.crosstab()

In [28]: pd.crosstab(df['Col X'], df['Col Y'])
Out[28]:
Col Y    cat 1  cat 2  cat 3
Col X
class 1      1      0      0
class 2      1      0      1
class 3      0      1      0

2) Or, use groupby on 'Col X','Col Y' with unstack over Col Y, then fill NaNs with zeros.

In [29]: df.groupby(['Col X','Col Y']).size().unstack('Col Y', fill_value=0)
Out[29]:
Col Y    cat 1  cat 2  cat 3
Col X
class 1      1      0      0
class 2      1      0      1
class 3      0      1      0

3) Or, use pd.pivot_table() with index=Col X, columns=Col Y

In [30]: pd.pivot_table(df, index=['Col X'], columns=['Col Y'], aggfunc=len, fill_value=0)
Out[30]:
Col Y    cat 1  cat 2  cat 3
Col X
class 1      1      0      0
class 2      1      0      1
class 3      0      1      0

4) Or, use set_index with unstack

In [492]: df.assign(v=1).set_index(['Col X', 'Col Y'])['v'].unstack(fill_value=0)
Out[492]:
Col Y    cat 1  cat 2  cat 3
Col X
class 1      1      0      0
class 2      1      0      1
class 3      0      1      0