$\mathrm{rank}(AB-BA)=1$ implies $A$ and $B$ are simultaneously triangularisable

That follows from the book Simultaneous Triangularization by Radjavi and Rosenthal (page 8). The original proof is due to Thomas Laffey.

Let $\{y\}$ be a basis of $\mathrm{Im}(AB-BA)$. Let $\lambda\in\mathrm{Spec}(B)$. If $B=\lambda I$, then there is almost nothing to do. Otherwise $F=\ker(B-\lambda I)$, $G=\mathrm{Im}(B-\lambda I)$ are non-trivial $B$-invariant subspaces. If we show that $F$ or $G$ is $A$-invariant, then we are the kings of oil.

Assume that $F$ is not $A$-invariant. Then there is $x$ s.t. $(B-\lambda I)x=0$, $(B-\lambda I)Ax\not= 0$. We have $$A(B-\lambda I)x-(B-\lambda I)Ax=ABx-BAx=-(B-\lambda I)Ax\in\mathrm{Im}(AB-BA)\cap\mathrm{Im}(B-\lambda I)\setminus\{0\}.$$ Thus $y\in G$.

Let $z\in \mathbb{C}^n$. Then $A(B-\lambda I)z$ is in the form $(B-\lambda I)Az+\alpha y$. Therefore, $G$ is $A$-invariant and we are done. $\square$