What is the difference between mutually independent and pairwise independent events in probability theory?
Solution 1:
Mutual independence: Every event is independent of any intersection of the other events.
Pairwise independence: Any two events are independent.
$A, B, C$ are mutually independent if $$P(A\cap B\cap C)=P(A)P(B)P(C)$$ $$P(A\cap B)=P(A)P(B)$$ $$P(A\cap C)=P(A)P(C)$$ $$P(B\cap C)=P(B)P(C)$$
On the other hand, $A, B, C$ are pairwise independent if $$P(A\cap B)=P(A)P(B)$$ $$P(A\cap C)=P(A)P(C)$$ $$P(B\cap C)=P(B)P(C)$$
I'm sure you can solve your problem now.