What is the difference between mutually independent and pairwise independent events in probability theory?

Solution 1:

Mutual independence: Every event is independent of any intersection of the other events.

Pairwise independence: Any two events are independent.

$A, B, C$ are mutually independent if $$P(A\cap B\cap C)=P(A)P(B)P(C)$$ $$P(A\cap B)=P(A)P(B)$$ $$P(A\cap C)=P(A)P(C)$$ $$P(B\cap C)=P(B)P(C)$$

On the other hand, $A, B, C$ are pairwise independent if $$P(A\cap B)=P(A)P(B)$$ $$P(A\cap C)=P(A)P(C)$$ $$P(B\cap C)=P(B)P(C)$$

I'm sure you can solve your problem now.