Solution 1:

$$\begin{align}\left(1+\frac 1n\right)^n&=\sum_{k=0}^{n}\binom{n}{k}\left(\frac 1n\right)^k\\&=\sum_{k=0}^{n}\frac{n(n-1)\cdots(n-k+1)}{k!}\left(\frac 1n\right)^k\\&=\sum_{k=0}^{n}\frac{1}{k!}\left(1-\frac 1n\right)\left(1-\frac 2n\right)\cdots\left(1-\frac{k-1}{n}\right)\\&\lt \sum_{k=0}^{n}\frac{1}{k!}\\&=1+\frac{1}{1}+\frac{1}{2}+\frac{1}{3\cdot 2}+\frac{1}{4\cdot 3\cdot 2}+\cdots+\frac{1}{n\cdot(n-1)\cdots 2}\\&\lt 1+\frac{1}{2^0}+\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+\cdots+\frac{1}{2^{n-1}}\\&=3-\frac{1}{2^{n-1}}\\&\lt 3\end{align}$$

Solution 2:

First you should know that: $$ (1) \ln(1+x)=x-\frac{x^2}{2}+O(x^3)$$ Also consider that ln is an injective function meaning if $\ln(A)=1$ then $A=e$
suppose $A=(1+\frac{1}{n})^n$ So: $$ \lim_{n\to\infty} \ln(A) = \lim_{n\to\infty} \ln((1+\frac{1}{n})^n = \lim_{n\to\infty} n\ln(1+\frac{1}{n}) $$ Applying (1): $$ \lim_{n\to\infty} n\ln(1+\frac{1}{n}) = \lim_{n\to\infty} n(\frac{1}{n}-\frac{1}{2n^2}+O(\frac{1}{n^3}))$$ $$\lim_{n\to\infty} n(\frac{1}{n}-\frac{1}{2n^2}+O(\frac{1}{n^3})) = \lim_{n\to\infty} (1-\frac{1}{2n}+nO(\frac{1}{n^3})) = 1 $$ Since $$ \lim_{n\to\infty} \ln(A) = 1 $$ Than $$ \lim_{n\to\infty} A = e $$ So e is the least upper bound.