Proof of Pinsker's inequality.
How to prove the following known (Pinsker's) inequality?
For two strictly positive sequences $(p_i)^n_{i=l}$ and $(q_i)^n_{i=l}$ with $\sum_{i=1}^np_i=\sum_{i=1}^nq_i=1$ one has $$\sum_{i=1}^np_i\log\frac{p_i}{q_i}\ge \frac{1}{2}\left(\sum_{i=1}^n|p_i-q_i|\right)^2.$$
See here. Pinsker's inequality
https://mathoverflow.net/questions/42667/two-reference-requests-pinskers-inequality-and-pontryagin-duality
Take a look at Tsybakov 2009 Introduction to Nonparametric Estimation, p.88, also available in the net. Good and simple proof.