Problem about limit of Lebesgue integral over a measurable set
Solution 1:
For any measurable set $E \subset \mathbb{R},$ we have $\displaystyle \int_Ef \leqslant \int_{\mathbb{R}}f < \infty$ and $\displaystyle \int_{E}f_n \leqslant \int_{\mathbb{R}}f_n \to \int_{\mathbb{R}}f$.
Hence, for sufficiently large $n$, we have
$$\displaystyle \int_Ef_n < \infty.$$
Using Fatou's Lemma,
$$\int_E f = \int_E \lim f_n=\int_E \liminf f_n \leqslant \liminf \int_E f_n$$
and reverse Fatou's Lemma,
$$\liminf \int_E f_n \leqslant \limsup\int_E f_n \leqslant \int_E \limsup f_n = \int_E \lim f_n = \int_Ef.$$
Hence,
$$\tag{*}\int_Ef \leqslant \liminf \int_E f_n \leqslant \limsup\int_E f_n \leqslant\int_Ef,$$
and
$$\liminf \int_E f_n = \limsup\int_E f_n=\lim \int_E f_n = \int_Ef.$$
Update:
We can avoid the argument based on reverse Fatou as follows.
Note that since $f_n \to f$ and $\int_{\mathbb{R}} f_n \to \int_{\mathbb{R}} f$ we have
$$\begin{align}\limsup \int_E f_n &= -\liminf \left(-\int_E f_n \right) \\&= -\liminf \left(\int_{\mathbb{R}\setminus E} f_n-\int_{\mathbb{R}} f_n \right) \\ &= -\liminf \int _{\mathbb{R}\setminus E} f_n+\liminf \int_{\mathbb{R}} f_n \\ &\leqslant -\int_{\mathbb{R} \setminus E} \liminf f_n + \int_{\mathbb{R}} f \\ &= -\int_{\mathbb{R} \setminus E} f + \int_{\mathbb{R}} f \\ &= \int_E f\end{align} $$
The chain of inequalities (*) now follows.