How to programmatically set the SSLContext of a JAX-WS client?
I'm working on a server in a distributed application that has browser clients and also participates in server-to-server communication with a 3rd party. My server has a CA-signed certificate to let my clients connect using TLS (SSL) communication using HTTP/S and XMPP(secure). That's all working fine.
Now I need to securely connect to a 3rd party server using JAX-WS over HTTPS/SSL. In this communication, my server acts as client in the JAX-WS interation and I've a client certificate signed by the 3rd party.
I tried adding a new keystore through the standard system configuration (-Djavax.net.ssl.keyStore=xyz
) but my other components are clearly affected by this. Although my other components are using dedicated parameters for their SSL configuration (my.xmpp.keystore=xxx, my.xmpp.truststore=xxy, ...
), it seems that they end up using the global SSLContext
. (The configuration namespace my.xmpp.
seemed to indicate separation, but it's not the case)
I also tried adding my client certificate into my original keystore, but -again- my other components don't seem to like it either.
I think that my only option left is to programmatically hook into the JAX-WS HTTPS configuration to setup the keystore and truststore for the client JAX-WS interaction.
Any ideas/pointers on how to do this? All information I find either uses the javax.net.ssl.keyStore
method or is setting the global SSLContext
that -I guess- will end up in the same confilc. The closest I got to something helpful was this old bug report that requests the feature I need: Add support for passing an SSLContext to the JAX-WS client runtime
Any takes?
Solution 1:
This one was a hard nut to crack, so for the record:
To solve this, it required a custom KeyManager
and a SSLSocketFactory
that uses this custom KeyManager
to access the separated KeyStore
.
I found the base code for this KeyStore
and SSLFactory
on this excellent blog entry:
how-to-dynamically-select-a-certificate-alias-when-invoking-web-services
Then, the specialized SSLSocketFactory
needs to be inserted into the WebService context:
service = getWebServicePort(getWSDLLocation());
BindingProvider bindingProvider = (BindingProvider) service;
bindingProvider.getRequestContext().put("com.sun.xml.internal.ws.transport.https.client.SSLSocketFactory", getCustomSocketFactory());
Where the getCustomSocketFactory()
returns a SSLSocketFactory
created using the method mentioned above. This would only work for JAX-WS RI from the Sun-Oracle impl built into the JDK, given that the string indicating the SSLSocketFactory
property is proprietary for this implementation.
At this stage, the JAX-WS service communication is secured through SSL, but if you are loading the WSDL from the same secure server () then you'll have a bootstrap problem, as the HTTPS request to gather the WSDL will not be using the same credentials than the Web Service. I worked around this problem by making the WSDL locally available (file:///...) and dynamically changing the web service endpoint: (a good discussion on why this is needed can be found in this forum)
bindingProvider.getRequestContext().put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, webServiceLocation);
Now the WebService gets bootstrapped and is able to communicate through SSL with the server counterpart using a named (alias) Client-Certificate and mutual authentication. ∎
Solution 2:
This is how I solved it based on this post with some minor tweaks. This solution does not require creation of any additional classes.
SSLContext sc = SSLContext.getInstance("SSLv3");
KeyManagerFactory kmf =
KeyManagerFactory.getInstance( KeyManagerFactory.getDefaultAlgorithm() );
KeyStore ks = KeyStore.getInstance( KeyStore.getDefaultType() );
ks.load(new FileInputStream( certPath ), certPasswd.toCharArray() );
kmf.init( ks, certPasswd.toCharArray() );
sc.init( kmf.getKeyManagers(), null, null );
((BindingProvider) webservicePort).getRequestContext()
.put(
"com.sun.xml.internal.ws.transport.https.client.SSLSocketFactory",
sc.getSocketFactory() );
Solution 3:
I tried the following and it didn't work on my environment:
bindingProvider.getRequestContext().put("com.sun.xml.internal.ws.transport.https.client.SSLSocketFactory", getCustomSocketFactory());
But different property worked like a charm:
bindingProvider.getRequestContext().put(JAXWSProperties.SSL_SOCKET_FACTORY, getCustomSocketFactory());
The rest of the code was taken from the first reply.
Solution 4:
By combining Radek and l0co's answers you can access the WSDL behind https:
SSLContext sc = SSLContext.getInstance("TLS");
KeyManagerFactory kmf = KeyManagerFactory
.getInstance(KeyManagerFactory.getDefaultAlgorithm());
KeyStore ks = KeyStore.getInstance("JKS");
ks.load(getClass().getResourceAsStream(keystore),
password.toCharArray());
kmf.init(ks, password.toCharArray());
sc.init(kmf.getKeyManagers(), null, null);
HttpsURLConnection
.setDefaultSSLSocketFactory(sc.getSocketFactory());
yourService = new YourService(url); //Handshake should succeed