Prove $A_t := W_t^3-3t W_t$ a martingale
Solution 1:
Writing
$$W_t^3 = ((W_t-W_s)+W_s)^3 = (W_t-W_s)^3+ 3 W_s (W_t-W_s)^2 + 3 W_s^2 (W_t-W_s) + W_s^3$$
we find using the independence of the increments
$$\begin{align*} \mathbb{E}(W_t^3 \mid \mathcal{F}_s) &= \underbrace{\mathbb{E}((W_t-W_s)^3)}_{\mathbb{E}(W_{t-s}^3)=0} + 3W_s \underbrace{\mathbb{E}(W_t-W_s)^2}_{\mathbb{E}(W_{t-s}^2)=t-s} + 3W_s^2 \underbrace{\mathbb{E}(W_t-W_s)}_{0}+W_s^3 \\ &= 3(t-s) W_s + W_s^3. \end{align*}$$
Consequently,
$$\mathbb{E}(A_t \mid \mathcal{F}_s) = \mathbb{E}(W_t^3 - 3t W_t \mid \mathcal{F}_s) = 3(t-s)W_s+ W_s^3 - 3t \underbrace{\mathbb{E}(W_t \mid \mathcal{F}_s)}_{W_s} = A_s.$$
A general remark: If you want to prove a process of this form a martingale, it is always a good idea to write $$W_t = (W_t-W_s)+W_s$$ and separate both terms, since this allows us to use the independence of the increments (which in turn makes calculation of conditional expectations much more easier).
Solution 2:
An easy way would be to use Itô Formula : $$\mathrm d (W_t^3-3tW_t)=3W_t^2\,\mathrm d W_t+3W_t\,\mathrm d t-3t\,\mathrm dW_t-3W_t\mathrm dt,$$ i.e. $$W_t^3-3tW_t=\int_0^t 3(W_t^2-t)\,\mathrm d W_t.$$
By Fubini, $$\mathbb E\int_0^T(W_t^2-t)^2\,\mathrm d t=\int_0^T\mathbb E[(W_t^2-t)^2]\,\mathrm d t<\infty ,$$ and thus, it's indeed a martingale.
Solution 3:
This is a settled question but I like to add another solution :-)
We have $W_t \mid \mathcal{F}_s \sim \mathcal{N}(W_s,t-s)$ hence using this we have $$\mathbb{E}(W_t^3 \mid \mathcal{F}_s)=W_s^3+3W_s(t-s).$$
Therefore \begin{align} \mathbb{E}(W_t^3 - 3t W_t \mid \mathcal{F}_s)&=\mathbb{E}(W_t^3 \mid \mathcal{F}_s)-3t\mathbb{E}( W_t \mid \mathcal{F}_s)\\ &=W_s^3+3W_s(t-s)-3tW_s\\ &=W_s^3-3sW_s. \end{align}