Fast Prime Number Generation in Clojure
Here's another approach that celebrates Clojure's Java interop
. This takes 374ms on a 2.4 Ghz Core 2 Duo (running single-threaded). I let the efficient Miller-Rabin
implementation in Java's BigInteger#isProbablePrime
deal with the primality check.
(def certainty 5)
(defn prime? [n]
(.isProbablePrime (BigInteger/valueOf n) certainty))
(concat [2] (take 10001
(filter prime?
(take-nth 2
(range 1 Integer/MAX_VALUE)))))
The Miller-Rabin
certainty of 5 is probably not very good for numbers much larger than this. That certainty is equal to 96.875%
certain it's prime (1 - .5^certainty
)
I realize this is a very old question, but I recently ended up looking for the same and the links here weren't what I'm looking for (restricted to functional types as much as possible, lazily generating ~every~ prime I want).
I stumbled upon a nice F# implementation, so all credits are his. I merely ported it to Clojure:
(defn gen-primes "Generates an infinite, lazy sequence of prime numbers"
[]
(letfn [(reinsert [table x prime]
(update-in table [(+ prime x)] conj prime))
(primes-step [table d]
(if-let [factors (get table d)]
(recur (reduce #(reinsert %1 d %2) (dissoc table d) factors)
(inc d))
(lazy-seq (cons d (primes-step (assoc table (* d d) (list d))
(inc d))))))]
(primes-step {} 2)))
Usage is simply
(take 5 (gen-primes))
Very late to the party, but I'll throw in an example, using Java BitSets:
(defn sieve [n]
"Returns a BitSet with bits set for each prime up to n"
(let [bs (new java.util.BitSet n)]
(.flip bs 2 n)
(doseq [i (range 4 n 2)] (.clear bs i))
(doseq [p (range 3 (Math/sqrt n))]
(if (.get bs p)
(doseq [q (range (* p p) n (* 2 p))] (.clear bs q))))
bs))
Running this on a 2014 Macbook Pro (2.3GHz Core i7), I get:
user=> (time (do (sieve 1e6) nil))
"Elapsed time: 64.936 msecs"
See the last example here: http://clojuredocs.org/clojure_core/clojure.core/lazy-seq
;; An example combining lazy sequences with higher order functions
;; Generate prime numbers using Eratosthenes Sieve
;; See http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
;; Note that the starting set of sieved numbers should be
;; the set of integers starting with 2 i.e., (iterate inc 2)
(defn sieve [s]
(cons (first s)
(lazy-seq (sieve (filter #(not= 0 (mod % (first s)))
(rest s))))))
user=> (take 20 (sieve (iterate inc 2)))
(2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71)
Here's a nice and simple implementation:
http://clj-me.blogspot.com/2008/06/primes.html
... but it is written for some pre-1.0 version of Clojure. See lazy_seqs in Clojure Contrib for one that works with the current version of the language.