Caesar Cipher Function in Python

I'm trying to create a simple Caesar Cipher function in Python that shifts letters based on input from the user and creates a final, new string at the end. The only problem is that the final cipher text shows only the last shifted character, not an entire string with all the shifted characters.

Here's my code:

plainText = raw_input("What is your plaintext? ")
shift = int(raw_input("What is your shift? "))

def caesar(plainText, shift): 

    for ch in plainText:
        if ch.isalpha():
            stayInAlphabet = ord(ch) + shift 
            if stayInAlphabet > ord('z'):
                stayInAlphabet -= 26
            finalLetter = chr(stayInAlphabet)
        cipherText = ""
        cipherText += finalLetter

    print "Your ciphertext is: ", cipherText

    return cipherText

caesar(plainText, shift)

Solution 1:

I realize that this answer doesn't really answer your question, but I think it's helpful anyway. Here's an alternative way to implementing the caesar cipher with string methods:

def caesar(plaintext, shift):
    alphabet = string.ascii_lowercase
    shifted_alphabet = alphabet[shift:] + alphabet[:shift]
    table = string.maketrans(alphabet, shifted_alphabet)
    return plaintext.translate(table)

In fact, since string methods are implemented in C, we will see an increase in performance with this version. This is what I would consider the 'pythonic' way of doing this.

Solution 2:

You need to move cipherText = "" before the start of the for loop. You're resetting it each time through the loop.

def caesar(plainText, shift): 
  cipherText = ""
  for ch in plainText:
    if ch.isalpha():
      stayInAlphabet = ord(ch) + shift 
      if stayInAlphabet > ord('z'):
        stayInAlphabet -= 26
      finalLetter = chr(stayInAlphabet)
      cipherText += finalLetter
  print "Your ciphertext is: ", cipherText
  return cipherText

Solution 3:

Using some ascii number tricks:

# See http://ascii.cl/
upper = {ascii:chr(ascii) for ascii in range(65,91)}
lower = {ascii:chr(ascii) for ascii in range(97,123)}
digit = {ascii:chr(ascii) for ascii in range(48,58)}


def ceasar(s, k):
    for c in s:
        o = ord(c)
        # Do not change symbols and digits
        if (o not in upper and o not in lower) or o in digit:
            yield o
        else:
            # If it's in the upper case and
            # that the rotation is within the uppercase
            if o in upper and o + k % 26 in upper:
                yield o + k % 26
            # If it's in the lower case and
            # that the rotation is within the lowercase
            elif o in lower and o + k % 26 in lower:
                yield o + k % 26
            # Otherwise move back 26 spaces after rotation.
            else: # alphabet.
                yield o + k % 26 -26

x = (''.join(map(chr, ceasar(s, k))))
print (x)

Solution 4:

This is an improved version of the code in the answer of @amillerrhodes that works with different alphabets, not just lowercase:

def caesar(text, step, alphabets):

    def shift(alphabet):
        return alphabet[step:] + alphabet[:step]

    shifted_alphabets = tuple(map(shift, alphabets))
    joined_aphabets = ''.join(alphabets)
    joined_shifted_alphabets = ''.join(shifted_alphabets)
    table = str.maketrans(joined_aphabets, joined_shifted_alphabets)
    return text.translate(table)

Example of usage:

>>> import string
>>> alphabets = (string.ascii_lowercase, string.ascii_uppercase, string.digits)
>>> caesar('Abc-xyZ.012:789?жñç', step=4, alphabets=alphabets)
'Efg-bcD.456:123?жñç'

References:
Docs on str.maketrans.
Docs on str.translate.
Docs on the string library

Solution 5:

Batteries included

while 1:
    phrase = raw_input("Could you please give me a phrase to encrypt?\n")
    if phrase == "" : break
    print "Here it is your phrase, encrypted:"
    print phrase.encode("rot_13")
print "Have a nice afternoon!"

https://docs.python.org/2/library/codecs.html#python-specific-encodings

Python 3 update

The fine docs say

[Now the rot_13] codec provides a text transform: a str to str mapping. It is not supported by str.encode() (which only produces bytes output).

Or, in other words, you have to import encode from the codecs module and use it with the string to be encoded as its first argument

from codecs import decode
...
    print(encode(phrase, 'rot13'))