How to perform bilinear interpolation in Python

I would like to perform blinear interpolation using python.
Example gps point for which I want to interpolate height is:

B = 54.4786674627
L = 17.0470721369

using four adjacent points with known coordinates and height values:

n = [(54.5, 17.041667, 31.993), (54.5, 17.083333, 31.911), (54.458333, 17.041667, 31.945), (54.458333, 17.083333, 31.866)]

z01    z11

     z
z00    z10

and here's my primitive attempt:
import math
z00 = n[0][2]
z01 = n[1][2]
z10 = n[2][2]
z11 = n[3][2]
c = 0.016667 #grid spacing
x0 = 56 #latitude of origin of grid
y0 = 13 #longitude of origin of grid
i = math.floor((L-y0)/c)
j = math.floor((B-x0)/c)
t = (B - x0)/c - j
z0 = (1-t)*z00 + t*z10
z1 = (1-t)*z01 + t*z11
s = (L-y0)/c - i
z = (1-s)*z0 + s*z1

where z0 and z1
z01  z0  z11

     z
z00  z1   z10

I get 31.964 but from other software I get 31.961.
Is my script correct?
Can You provide another approach?



2022 Edit:
I would like to thank everyone who, even more than a decade after publication of this question, gives new answers to it.


Here's a reusable function you can use. It includes doctests and data validation:

def bilinear_interpolation(x, y, points):
    '''Interpolate (x,y) from values associated with four points.

    The four points are a list of four triplets:  (x, y, value).
    The four points can be in any order.  They should form a rectangle.

        >>> bilinear_interpolation(12, 5.5,
        ...                        [(10, 4, 100),
        ...                         (20, 4, 200),
        ...                         (10, 6, 150),
        ...                         (20, 6, 300)])
        165.0

    '''
    # See formula at:  http://en.wikipedia.org/wiki/Bilinear_interpolation

    points = sorted(points)               # order points by x, then by y
    (x1, y1, q11), (_x1, y2, q12), (x2, _y1, q21), (_x2, _y2, q22) = points

    if x1 != _x1 or x2 != _x2 or y1 != _y1 or y2 != _y2:
        raise ValueError('points do not form a rectangle')
    if not x1 <= x <= x2 or not y1 <= y <= y2:
        raise ValueError('(x, y) not within the rectangle')

    return (q11 * (x2 - x) * (y2 - y) +
            q21 * (x - x1) * (y2 - y) +
            q12 * (x2 - x) * (y - y1) +
            q22 * (x - x1) * (y - y1)
           ) / ((x2 - x1) * (y2 - y1) + 0.0)

You can run test code by adding:

if __name__ == '__main__':
    import doctest
    doctest.testmod()

Running the interpolation on your dataset produces:

>>> n = [(54.5, 17.041667, 31.993),
         (54.5, 17.083333, 31.911),
         (54.458333, 17.041667, 31.945),
         (54.458333, 17.083333, 31.866),
    ]
>>> bilinear_interpolation(54.4786674627, 17.0470721369, n)
31.95798688313631

Not sure if this helps much, but I get a different value when doing linear interpolation using scipy:

>>> import numpy as np
>>> from scipy.interpolate import griddata
>>> n = np.array([(54.5, 17.041667, 31.993),
                  (54.5, 17.083333, 31.911),
                  (54.458333, 17.041667, 31.945),
                  (54.458333, 17.083333, 31.866)])
>>> griddata(n[:,0:2], n[:,2], [(54.4786674627, 17.0470721369)], method='linear')
array([ 31.95817681])

Inspired from here, I came up with the following snippet. The API is optimized for reusing a lot of times the same table:

from bisect import bisect_left

class BilinearInterpolation(object):
    """ Bilinear interpolation. """
    def __init__(self, x_index, y_index, values):
        self.x_index = x_index
        self.y_index = y_index
        self.values = values

    def __call__(self, x, y):
        # local lookups
        x_index, y_index, values = self.x_index, self.y_index, self.values

        i = bisect_left(x_index, x) - 1
        j = bisect_left(y_index, y) - 1

        x1, x2 = x_index[i:i + 2]
        y1, y2 = y_index[j:j + 2]
        z11, z12 = values[j][i:i + 2]
        z21, z22 = values[j + 1][i:i + 2]

        return (z11 * (x2 - x) * (y2 - y) +
                z21 * (x - x1) * (y2 - y) +
                z12 * (x2 - x) * (y - y1) +
                z22 * (x - x1) * (y - y1)) / ((x2 - x1) * (y2 - y1))

You can use it like this:

table = BilinearInterpolation(
    x_index=(54.458333, 54.5), 
    y_index=(17.041667, 17.083333), 
    values=((31.945, 31.866), (31.993, 31.911))
)

print(table(54.4786674627, 17.0470721369))
# 31.957986883136307

This version has no error checking and you will run into trouble if you try to use it at the boundaries of the indexes (or beyond). For the full version of the code, including error checking and optional extrapolation, look here.


You can also refer to the interp function in matplotlib.