Integral $\frac{1}{\pi}\int_0^{\pi/3}\log\big( \mu(\theta)+\sqrt{\mu^2(\theta)-1} \big)\ d\theta, \quad \mu(\theta)=\frac{1+2\cos\theta}{2}.$

Solution 1:

The integral can be expressed in terms of a series of Gauss hypergeometric functions. It is doubtfull that it would be possible to go further on this way.

$I = \frac{1}{\pi}\int_0^{\pi/3}\ln\left(\mu(\theta)+\sqrt{\mu^2(\theta)-1}\right)d\theta = \frac{1}{\pi}\int_0^{\pi/3}\cosh^{-1}(\mu(\theta))$, where $\mu(\theta) = \frac{1}{2}+\cos(\theta)$.

$$\cosh^{-1}(\mu)=\sum_{k=0}^\infty \frac{(-1)^k\Gamma(k+1/2)}{2^{k-1/2}(2k+1)k!\sqrt{\pi}}(\mu-1)^{k+1/2}$$ so $$\mu(\theta)=\frac{1}{2}+\cos(\theta)\to I = \frac{1}{\pi^{3/2}}\sum_{k=0}^\infty \frac{(-1)^k\Gamma(k+1/2)}{2^{k-1/2}(2k+1)k!}(\cos(\theta)-1/2)^{k+1/2}$$

Let $I_k = \int(cos(\theta) - 1/2)^{k+1/2}d\theta$. Then $$I_k = -\frac{1}{(2k+3)2^k}\sqrt{\frac{2}{3}}(2\cos(\theta)-1)^{k+3/2}F_1\left(k+\frac{3}{2};\frac{1}{2},\frac{1}{2};k+\frac{5}{2};\frac{1}{3}(1-2\cos(\theta)),2\cos(\theta)-1\right)+C$$ where $C$ is some constant and $F_1$ is the Appell hypergeometric function of two variables.

$2\cos(0)-1=1$, $2\cos(\pi/3)-1=0$, and $F_1(a;b,b;c;-1/3,1)=\frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)}_2F_1(a,b;c-b;-1/3)$, so $$I_k=\frac{1}{(2k+3)2^k}\sqrt{\frac{2}{3}}\frac{\Gamma(k+5/2)\Gamma(1/2)}{\Gamma(1)\Gamma(k+2)} {}_2F_1\left(k+\frac{3}{2},\frac{1}{2};k+2;-\frac{1}{3}\right)$$ $$I_k=\sqrt{\frac{2\pi}{3}}\frac{(2k+1)\Gamma(k+1/2)}{2^{k+2}(k+1)!} {}_2F_1\left(k+\frac{3}{2},\frac{1}{2};k+2;-\frac{1}{3}\right)$$

Finally, from $I = \frac{1}{\pi^{3/2}}\sum_{k=0}^\infty \frac{(-1)^k\Gamma(k+1/2)}{2^{k-1/2}(2k+1)k!}I_k$, we have $$\frac{1}{\pi}\int_0^{\pi/3}\ln\left(\mu(\theta)+\sqrt{\mu^2(\theta)-1}\right)d\theta=\boxed{\frac{1}{\pi\sqrt{3}}\sum_{k=0}^\infty \frac{(-1)^k(\Gamma(k+1/2))^2}{2^{2k+1}(2k+1)k!(k+1)!} {}_2F_1\left(k+\frac{3}{2},\frac{1}{2};k+2;-\frac{1}{3}\right)}$$