Another combinatorics problem: $\sum\limits_{k = 0}^n (-1)^k \binom{2n-k}k2^{2n-2k}=2n+1$
Finally got it. First, note that we can take the inner sum to be $\sum_{k=0}^\infty$ since $\binom{2n-k}{k} = 0$ when $k > n$. Next, observe that $$ \binom{2n-k}{k} = \binom{2(n-k) + k}{k} = \binom{2j + k}{k} $$ where $j = n - k$. Then \begin{align*} \sum_{n \geq 0} \sum_{k \geq 0} (-1)^k \binom{2n - k}{k}2^{2(n-k)} x^{2n} &= \sum_{j \geq 0} \sum_{k \geq 0}(-1)^k \binom{2j + k}{k} 2^{2j} x^{2(j+k)}\\ &= \sum_{j \geq 0} (2x)^{2j} \sum_{k \geq 0} \binom{2j + k}{k} (-x^2)^k \, . \end{align*} By Hint 1, the inner sum is $\frac{1}{(1+x^2)^{2j+1}}$, so we find \begin{align*} \sum_{j \geq 0} (2x)^{2j} \sum_{k \geq 0} \binom{2j + k}{k} (-x^2)^k &= \sum_{j \geq 0} (2x)^{2j} \frac{1}{(1+x^2)^{2j+1}} = \frac{1}{1+x^2}\sum_{j \geq 0} \left(\frac{(2x)^2}{(1 + x^2)^2}\right)^j\\ &=\frac{1}{1+x^2} \frac{1}{1 - \frac{(2x)^2}{(1 + x^2)^2}} = \frac{1 + x^2}{(1 + x^2)^2 - (2x)^2}\\ &= \frac{1+x^2}{(1 + x^2 - 2x)(1 + x^2 + 2x)} = \frac{1+x^2}{(1 - x)^2(1 +x)^2} = \frac{1+x^2}{(1 - x^2)^2} \, . \end{align*}
You can easily check using the quotient rule that this last function is indeed $\frac{d}{dx} \frac{x}{1 - x^2}$. The result then follows from Hint 2.