Function over each value in Python Array (without using def)
The input array is x with dimensions (1 x 3) and the output array is 3 x 3 (column of input x column of input). The output array's diagonals are the values^2. If row != column, then the formula is x(row)+x(col) for each value. Currently for 1 x 3 but should assume a variety of dimensions as input. Cannot use 'def'. The current code does not work, what would you recommend?
x = np.array([[0, 5, 10]])
output array formulas =
[[i^2, x(row)+x(col), x(row)+x(col)]
[x(row)+x(col), i^2, x(row)+x(col)]
[x(row)+x(col), x(row)+x(col), i^2]]
# where row and column refer to the output matrix row, column. For example, the value in (1,2) is x(1)+x(2)= 5
ideal output =
[[0 5 10]
[5 25 15]
[10 15 100]]
Code Attempted:
x = np.array([[0, 5, 10]])
r, c = np.shape(x)
results = np.zeros((c, c))
g[range(c), range(c)] = x**2
for i in x:
for j in i:
results[i,j] = x[i]+x[j]
Solution 1:
Learn to use numpy methods and broadcasting:
>>> x
array([[ 0, 5, 10]])
>>> x.T
array([[ 0],
[ 5],
[10]])
>>> x.T + x
array([[ 0, 5, 10],
[ 5, 10, 15],
[10, 15, 20]])
>>> result = x.T + x
>>> result
array([[ 0, 5, 10],
[ 5, 10, 15],
[10, 15, 20]])
Then this handy built-in:
>>> np.fill_diagonal(result, x**2)
>>> result
array([[ 0, 5, 10],
[ 5, 25, 15],
[ 10, 15, 100]])
Can replace the results[range(c), range(c)] = x**2
Solution 2:
Try this:
x.repeat(x.shape[1], axis=0)
x = x+x.T
x[np.arange(len(x)),np.arange(len(x))] = (np.diag(x)/2)**2