R get column names for changed rows
I have two dataframes, old and new, in R. Is there a way to add a column (called changed) to the new dataframe that lists the column names (in this case, separated with a ";") where the values are different between the two dataframes? I am also trying to use this is a function where the column names that I am comparing are contained in other variables (x1, x2, x3). Ideally, I would only refer to x1, x2, x3 instead of the actual column names, but I can make due if this isn't possible. A tidy solution is preferable.
old <- data.frame(var1 = c(1, 2, 3, 5), var2 = c("A", "B", "C", "D"))
new <- data.frame(var1 = c(1, 4, 3, 6), var2 = c("A", "B", "D", "Z"))
x1 <- "var1"
x2 <- "var2"
x3 <- "changed"
#Output, adding a new column changed to new dataframe
var1 var2 changed
1 1 A NA
2 4 B var1
3 3 D var2
4 6 Z var1; var2
Solution 1:
A tidyverse
way -
library(dplyr)
library(tidyr)
cols <- names(new)
bind_cols(new, map2_df(old, new, `!=`) %>%
rowwise() %>%
transmute(changed = {
x <- c_across()
if(any(x)) paste0(cols[x], collapse = ';') else NA
}))
# var1 var2 changed
#1 1 A <NA>
#2 4 B var1
#3 3 D var2
#4 6 Z var1;var2
The same logic can be implemented in base R as well -
new$changed <- apply(mapply(`!=`, old, new), 1, function(x)
if(any(x)) paste0(cols[x], collapse = ';') else NA)
Solution 2:
Here is a base R approach.
new$changed <- apply(old != new, 1L, \(r, nms) toString(nms[which(r)]), colnames(old))
Output
var1 var2 changed
1 1 A
2 4 B var1
3 3 D var2
4 6 Z var1, var2