Mulitprocess Pools with different functions
Most examples of the Multiprocess Worker Pools execute a single function in different processes, f.e.
def foo(args):
pass
if __name__ == '__main__':
pool = multiprocessing.Pool(processes=30)
res=pool.map_async(foo,args)
Is there a way to handle two different and independent functions within the pool? So that you could assign f.e. 15 processes for foo() and 15 processes for bar() or is a pool bounded to a single function? Or du you have to create different processes for different functions manually with
p = Process(target=foo, args=(whatever,))
q = Process(target=bar, args=(whatever,))
q.start()
p.start()
and forget about the worker pool?
To pass different functions, you can simply call map_async
multiple times.
Here is an example to illustrate that,
from multiprocessing import Pool
from time import sleep
def square(x):
return x * x
def cube(y):
return y * y * y
pool = Pool(processes=20)
result_squares = pool.map_async(f, range(10))
result_cubes = pool.map_async(g, range(10))
The result will be:
>>> print result_squares.get(timeout=1)
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> print result_cubes.get(timeout=1)
[0, 1, 8, 27, 64, 125, 216, 343, 512, 729]
They will not run in parallel. See following code:
def updater1(q,i):
print "UPDATER 1:", i
return
def updater2(q,i):
print "UPDATER2:", i
return
if __name__=='__main__':
a = range(10)
b=["abc","def","ghi","jkl","mno","pqr","vas","dqfq","grea","qfwqa","qwfsa","qdqs"]
pool = multiprocessing.Pool()
func1 = partial(updater1,q)
func2 = partial(updater2,q)
pool.map_async(func1, a)
pool.map_async(func2, b)
pool.close()
pool.join()
The above code yields the following printout:
UPDATER 1: 1
UPDATER 1: 0
UPDATER 1: 2
UPDATER 1: 3
UPDATER 1: 4
UPDATER 1: 5
UPDATER 1: 6
UPDATER 1: 7
UPDATER 1: 8
UPDATER 1: 9
UPDATER2: abc
UPDATER2: def
UPDATER2: ghi
UPDATER2: jkl
UPDATER2: mno
UPDATER2: pqr
UPDATER2: vas
UPDATER2: dqfq
UPDATER2: grea
UPDATER2: qfwqa
UPDATER2: qwfsa
UPDATER2: qdqs
You can use map or some lambda function (edit: actually you can't use a lambda function). You can use a simple map function:
def smap(f, *args):
return f(*args)
pool = multiprocessing.Pool(processes=30)
res=pool.map(smap, function_list, args_list1, args_list2,...)
The normal map function takes iterables as inputs, which is inconvenient.
Here is a working example of the idea shared by @Rayamon:
import functools
from multiprocessing import Pool
def a(param1, param2, param3):
return param1 + param2 + param3
def b(param1, param2):
return param1 + param2
def smap(f):
return f()
func1 = functools.partial(a, 1, 2, 3)
func2 = functools.partial(b, 1, 2)
pool = Pool(processes=2)
res = pool.map(smap, [func1, func2])
pool.close()
pool.join()
print(res)
To further explain the other answer above, here is an example of:
- Run a single function with multiple inputs in parallel using a Pool (square function) Interesting Side Note the mangled op on lines for "5 981 25"
- Run multiple functions with different inputs (Both args and kwargs) and collect their results using a Pool (pf1, pf2, pf3 functions)
import datetime
import multiprocessing
import time
import random
from multiprocessing import Pool
def square(x):
# calculate the square of the value of x
print(x, x*x)
return x*x
def pf1(*args, **kwargs):
sleep_time = random.randint(3, 6)
print("Process : %s\tFunction : %s\tArgs: %s\tsleeping for %d\tTime : %s\n" % (multiprocessing.current_process().name, "pf1", args, sleep_time, datetime.datetime.now()))
print("Keyword Args from pf1: %s" % kwargs)
time.sleep(sleep_time)
print(multiprocessing.current_process().name, "\tpf1 done at %s\n" % datetime.datetime.now())
return (sum(*args), kwargs)
def pf2(*args):
sleep_time = random.randint(7, 10)
print("Process : %s\tFunction : %s\tArgs: %s\tsleeping for %d\tTime : %s\n" % (multiprocessing.current_process().name, "pf2", args, sleep_time, datetime.datetime.now()))
time.sleep(sleep_time)
print(multiprocessing.current_process().name, "\tpf2 done at %s\n" % datetime.datetime.now())
return sum(*args)
def pf3(*args):
sleep_time = random.randint(0, 3)
print("Process : %s\tFunction : %s\tArgs: %s\tsleeping for %d\tTime : %s\n" % (multiprocessing.current_process().name, "pf3", args, sleep_time, datetime.datetime.now()))
time.sleep(sleep_time)
print(multiprocessing.current_process().name, "\tpf3 done at %s\n" % datetime.datetime.now())
return sum(*args)
def smap(f, *arg):
if len(arg) == 2:
args, kwargs = arg
return f(list(args), **kwargs)
elif len(arg) == 1:
args = arg
return f(*args)
if __name__ == '__main__':
# Define the dataset
dataset = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]
# Output the dataset
print ('Dataset: ' + str(dataset))
# Run this with a pool of 5 agents having a chunksize of 3 until finished
agents = 5
chunksize = 3
with Pool(processes=agents) as pool:
result = pool.map(square, dataset)
print("Result of Squares : %s\n\n" % result)
with Pool(processes=3) as pool:
result = pool.starmap(smap, [(pf1, [1,2,3], {'a':123, 'b':456}), (pf2, [11,22,33]), (pf3, [111,222,333])])
# Output the result
print ('Result: %s ' % result)
Output:
*******
Dataset: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]
1 1
2 4
3 9
4 16
6 36
7 49
8 64
59 81
25
10 100
11 121
12 144
13 169
14 196
Result of Squares : [1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196]
Process : ForkPoolWorker-6 Function : pf1 Args: ([1, 2, 3],) sleeping for 3 Time : 2020-07-20 00:51:56.477299
Keyword Args from pf1: {'a': 123, 'b': 456}
Process : ForkPoolWorker-7 Function : pf2 Args: ([11, 22, 33],) sleeping for 8 Time : 2020-07-20 00:51:56.477371
Process : ForkPoolWorker-8 Function : pf3 Args: ([111, 222, 333],) sleeping for 1 Time : 2020-07-20 00:51:56.477918
ForkPoolWorker-8 pf3 done at 2020-07-20 00:51:57.478808
ForkPoolWorker-6 pf1 done at 2020-07-20 00:51:59.478877
ForkPoolWorker-7 pf2 done at 2020-07-20 00:52:04.478016
Result: [(6, {'a': 123, 'b': 456}), 66, 666]
Process finished with exit code 0