Python functools.wraps equivalent for classes
When defining a decorator using a class, how do I automatically transfer over__name__
, __module__
and __doc__
? Normally, I would use the @wraps decorator from functools. Here's what I did instead for a class (this is not entirely my code):
class memoized:
"""Decorator that caches a function's return value each time it is called.
If called later with the same arguments, the cached value is returned, and
not re-evaluated.
"""
def __init__(self, func):
super().__init__()
self.func = func
self.cache = {}
def __call__(self, *args):
try:
return self.cache[args]
except KeyError:
value = self.func(*args)
self.cache[args] = value
return value
except TypeError:
# uncacheable -- for instance, passing a list as an argument.
# Better to not cache than to blow up entirely.
return self.func(*args)
def __repr__(self):
return self.func.__repr__()
def __get__(self, obj, objtype):
return functools.partial(self.__call__, obj)
__doc__ = property(lambda self:self.func.__doc__)
__module__ = property(lambda self:self.func.__module__)
__name__ = property(lambda self:self.func.__name__)
Is there a standard decorator to automate the creation of name module and doc? Also, to automate the get method (I assume that's for creating bound methods?) Are there any missing methods?
Solution 1:
Everyone seems to have missed the obvious solution.
>>> import functools
>>> class memoized(object):
"""Decorator that caches a function's return value each time it is called.
If called later with the same arguments, the cached value is returned, and
not re-evaluated.
"""
def __init__(self, func):
self.func = func
self.cache = {}
functools.update_wrapper(self, func) ## TA-DA! ##
def __call__(self, *args):
pass # Not needed for this demo.
>>> @memoized
def fibonacci(n):
"""fibonacci docstring"""
pass # Not needed for this demo.
>>> fibonacci
<__main__.memoized object at 0x0156DE30>
>>> fibonacci.__name__
'fibonacci'
>>> fibonacci.__doc__
'fibonacci docstring'
Solution 2:
I'm not aware of such things in stdlib, but we can create our own if we need to.
Something like this can work :
from functools import WRAPPER_ASSIGNMENTS
def class_wraps(cls):
"""Update a wrapper class `cls` to look like the wrapped."""
class Wrapper(cls):
"""New wrapper that will extend the wrapper `cls` to make it look like `wrapped`.
wrapped: Original function or class that is beign decorated.
assigned: A list of attribute to assign to the the wrapper, by default they are:
['__doc__', '__name__', '__module__', '__annotations__'].
"""
def __init__(self, wrapped, assigned=WRAPPER_ASSIGNMENTS):
self.__wrapped = wrapped
for attr in assigned:
setattr(self, attr, getattr(wrapped, attr))
super().__init__(wrapped)
def __repr__(self):
return repr(self.__wrapped)
return Wrapper
Usage:
@class_wraps
class memoized:
"""Decorator that caches a function's return value each time it is called.
If called later with the same arguments, the cached value is returned, and
not re-evaluated.
"""
def __init__(self, func):
super().__init__()
self.func = func
self.cache = {}
def __call__(self, *args):
try:
return self.cache[args]
except KeyError:
value = self.func(*args)
self.cache[args] = value
return value
except TypeError:
# uncacheable -- for instance, passing a list as an argument.
# Better to not cache than to blow up entirely.
return self.func(*args)
def __get__(self, obj, objtype):
return functools.partial(self.__call__, obj)
@memoized
def fibonacci(n):
"""fibonacci docstring"""
if n in (0, 1):
return n
return fibonacci(n-1) + fibonacci(n-2)
print(fibonacci)
print("__doc__: ", fibonacci.__doc__)
print("__name__: ", fibonacci.__name__)
Output:
<function fibonacci at 0x14627c0>
__doc__: fibonacci docstring
__name__: fibonacci
EDIT:
And if you are wondering why this wasn't included in the stdlib is because you can
wrap your class decorator in a function decorator and use functools.wraps
like this:
def wrapper(f):
memoize = memoized(f)
@functools.wraps(f)
def helper(*args, **kws):
return memoize(*args, **kws)
return helper
@wrapper
def fibonacci(n):
"""fibonacci docstring"""
if n <= 1:
return n
return fibonacci(n-1) + fibonacci(n-2)
Solution 3:
Turns out there's a straightforward solution using functools.wraps
itself:
import functools
def dec(cls):
@functools.wraps(cls, updated=())
class D(cls):
decorated = 1
return D
@dec
class C:
"""doc"""
print(f'{C.__name__=} {C.__doc__=} {C.__wrapped__=}')
$ python3 t.py
C.__name__='C' C.__doc__='doc' C.__wrapped__=<class '__main__.C'>
Note that updated=()
is needed to prevent an attempt to update the class's __dict__
(this output is without updated=()
):
$ python t.py
Traceback (most recent call last):
File "t.py", line 26, in <module>
class C:
File "t.py", line 20, in dec
class D(cls):
File "/usr/lib/python3.8/functools.py", line 57, in update_wrapper
getattr(wrapper, attr).update(getattr(wrapped, attr, {}))
AttributeError: 'mappingproxy' object has no attribute 'update'