I'm trying to generate a linear regression on a scatter plot I have generated, however my data is in list format, and all of the examples I can find of using polyfit require using arange. arange doesn't accept lists though. I have searched high and low about how to convert a list to an array and nothing seems clear. Am I missing something?

Following on, how best can I use my list of integers as inputs to the polyfit?

here is the polyfit example I am following:

from pylab import * 

x = arange(data) 
y = arange(data) 

m,b = polyfit(x, y, 1) 

plot(x, y, 'yo', x, m*x+b, '--k') 
show() 

Solution 1:

arange generates lists (well, numpy arrays); type help(np.arange) for the details. You don't need to call it on existing lists.

>>> x = [1,2,3,4]
>>> y = [3,5,7,9] 
>>> 
>>> m,b = np.polyfit(x, y, 1)
>>> m
2.0000000000000009
>>> b
0.99999999999999833

I should add that I tend to use poly1d here rather than write out "m*x+b" and the higher-order equivalents, so my version of your code would look something like this:

import numpy as np
import matplotlib.pyplot as plt

x = [1,2,3,4]
y = [3,5,7,10] # 10, not 9, so the fit isn't perfect

coef = np.polyfit(x,y,1)
poly1d_fn = np.poly1d(coef) 
# poly1d_fn is now a function which takes in x and returns an estimate for y

plt.plot(x,y, 'yo', x, poly1d_fn(x), '--k') #'--k'=black dashed line, 'yo' = yellow circle marker

plt.xlim(0, 5)
plt.ylim(0, 12)

enter image description here

Solution 2:

This code:

from scipy.stats import linregress

linregress(x,y) #x and y are arrays or lists.

gives out a list with the following:

slope : float
slope of the regression line
intercept : float
intercept of the regression line
r-value : float
correlation coefficient
p-value : float
two-sided p-value for a hypothesis test whose null hypothesis is that the slope is zero
stderr : float
Standard error of the estimate

Source

Solution 3:

import numpy as np
import matplotlib.pyplot as plt 
from scipy import stats

x = np.array([1.5,2,2.5,3,3.5,4,4.5,5,5.5,6])
y = np.array([10.35,12.3,13,14.0,16,17,18.2,20,20.7,22.5])
gradient, intercept, r_value, p_value, std_err = stats.linregress(x,y)
mn=np.min(x)
mx=np.max(x)
x1=np.linspace(mn,mx,500)
y1=gradient*x1+intercept
plt.plot(x,y,'ob')
plt.plot(x1,y1,'-r')
plt.show()

USe this ..

Solution 4:

from pylab import * 

import numpy as np
x1 = arange(data) #for example this is a list
y1 = arange(data) #for example this is a list 
x=np.array(x) #this will convert a list in to an array
y=np.array(y)
m,b = polyfit(x, y, 1) 

plot(x, y, 'yo', x, m*x+b, '--k') 
show()