Spark scala column level mismatches from 2 dataframes
Maybe this will help:
val spark = SparkSession.builder.appName("Test").master("local[*]").getOrCreate();
import spark.implicits._
var df1 = Seq((1, "1", "6"), (2, "10", "8"), (3, "6", "4")).toDF("id", "value1", "value2")
var df2 = Seq((1, "1", "6"), (2, "5", "4"), (3, "3", "1")).toDF("id", "value1", "value2")
df1.columns.foreach(column => {
df1 = df1.withColumn(column, df1.col(column).cast(IntegerType))
})
df2.columns.foreach(column => {
df2 = df2.withColumn(column, df2.col(column).cast(IntegerType))
})
df1 = df1.withColumnRenamed("id", "df1_id")
df2 = df2.withColumnRenamed("id", "df2_id")
df1.show()
df2.show()
so till now you have two dataframes with value_x,value_y,value_z and going on ...
df1:
+------+------+------+
|df1_id|value1|value2|
+------+------+------+
| 1| 1| 6|
| 2| 10| 8|
| 3| 6| 4|
+------+------+------+
df2:
+------+------+------+
|df2_id|value1|value2|
+------+------+------+
| 1| 1| 6|
| 2| 5| 4|
| 3| 3| 1|
+------+------+------+
Now we are gonna join them base on id:
var df3 = df1.alias("df1").join(df2.alias("df2"), $"df1.df1_id" === $"df2.df2_id")
and last, we gonna take all columns on df1/df2 (* Its important that they will have the same columns) - without the id, and create a new column of the diff:
df1.columns.tail.foreach(col => {
val new_col_name = s"${col}-diff"
val df_a_col = s"df1.${col}"
val df_b_col = s"df2.${col}"
df3 = df3.withColumn(new_col_name, df3.col(df_a_col) - df3.col(df_b_col))
})
df3.show()
Result:
+------+------+------+------+------+------+-----------+-----------+
|df1_id|value1|value2|df2_id|value1|value2|value1-diff|value2-diff|
+------+------+------+------+------+------+-----------+-----------+
| 1| 1| 6| 1| 1| 6| 0| 0|
| 2| 10| 8| 2| 5| 4| 5| 4|
| 3| 6| 4| 3| 3| 1| 3| 3|
+------+------+------+------+------+------+-----------+-----------+
This is the result, and it`s dynamic so you can add valueX you want.