Fixed size queue which automatically dequeues old values upon new enques

I would write a wrapper class that on Enqueue would check the Count and then Dequeue when the count exceeds the limit.

 public class FixedSizedQueue<T>
 {
     ConcurrentQueue<T> q = new ConcurrentQueue<T>();
     private object lockObject = new object();

     public int Limit { get; set; }
     public void Enqueue(T obj)
     {
        q.Enqueue(obj);
        lock (lockObject)
        {
           T overflow;
           while (q.Count > Limit && q.TryDequeue(out overflow)) ;
        }
     }
 }

I'd go for a slight variant... extend ConcurrentQueue so as to be able to use Linq extensions on FixedSizeQueue

public class FixedSizedQueue<T> : ConcurrentQueue<T>
{
    private readonly object syncObject = new object();

    public int Size { get; private set; }

    public FixedSizedQueue(int size)
    {
        Size = size;
    }

    public new void Enqueue(T obj)
    {
        base.Enqueue(obj);
        lock (syncObject)
        {
            while (base.Count > Size)
            {
                T outObj;
                base.TryDequeue(out outObj);
            }
        }
    }
}

For anyone who finds it useful, here is some working code based on Richard Schneider's answer above:

public class FixedSizedQueue<T>
{
    readonly ConcurrentQueue<T> queue = new ConcurrentQueue<T>();

    public int Size { get; private set; }

    public FixedSizedQueue(int size)
    {
        Size = size;
    }

    public void Enqueue(T obj)
    {
        queue.Enqueue(obj);

        while (queue.Count > Size)
        {
            T outObj;
            queue.TryDequeue(out outObj);
        }
    }
}

For what its worth, here's a lightweight circular buffer with some methods marked for safe and unsafe use.

public class CircularBuffer<T> : IEnumerable<T>
{
    readonly int size;
    readonly object locker;

    int count;
    int head;
    int rear;
    T[] values;

    public CircularBuffer(int max)
    {
        this.size = max;
        locker = new object();
        count = 0;
        head = 0;
        rear = 0;
        values = new T[size];
    }

    static int Incr(int index, int size)
    {
        return (index + 1) % size;
    }

    private void UnsafeEnsureQueueNotEmpty()
    {
        if (count == 0)
            throw new Exception("Empty queue");
    }

    public int Size { get { return size; } }
    public object SyncRoot { get { return locker; } }

    #region Count

    public int Count { get { return UnsafeCount; } }
    public int SafeCount { get { lock (locker) { return UnsafeCount; } } }
    public int UnsafeCount { get { return count; } }

    #endregion

    #region Enqueue

    public void Enqueue(T obj)
    {
        UnsafeEnqueue(obj);
    }

    public void SafeEnqueue(T obj)
    {
        lock (locker) { UnsafeEnqueue(obj); }
    }

    public void UnsafeEnqueue(T obj)
    {
        values[rear] = obj;

        if (Count == Size)
            head = Incr(head, Size);
        rear = Incr(rear, Size);
        count = Math.Min(count + 1, Size);
    }

    #endregion

    #region Dequeue

    public T Dequeue()
    {
        return UnsafeDequeue();
    }

    public T SafeDequeue()
    {
        lock (locker) { return UnsafeDequeue(); }
    }

    public T UnsafeDequeue()
    {
        UnsafeEnsureQueueNotEmpty();

        T res = values[head];
        values[head] = default(T);
        head = Incr(head, Size);
        count--;

        return res;
    }

    #endregion

    #region Peek

    public T Peek()
    {
        return UnsafePeek();
    }

    public T SafePeek()
    {
        lock (locker) { return UnsafePeek(); }
    }

    public T UnsafePeek()
    {
        UnsafeEnsureQueueNotEmpty();

        return values[head];
    }

    #endregion


    #region GetEnumerator

    public IEnumerator<T> GetEnumerator()
    {
        return UnsafeGetEnumerator();
    }

    public IEnumerator<T> SafeGetEnumerator()
    {
        lock (locker)
        {
            List<T> res = new List<T>(count);
            var enumerator = UnsafeGetEnumerator();
            while (enumerator.MoveNext())
                res.Add(enumerator.Current);
            return res.GetEnumerator();
        }
    }

    public IEnumerator<T> UnsafeGetEnumerator()
    {
        int index = head;
        for (int i = 0; i < count; i++)
        {
            yield return values[index];
            index = Incr(index, size);
        }
    }

    System.Collections.IEnumerator System.Collections.IEnumerable.GetEnumerator()
    {
        return this.GetEnumerator();
    }

    #endregion
}

I like to use the Foo()/SafeFoo()/UnsafeFoo() convention:

  • Foo methods call UnsafeFoo as a default.
  • UnsafeFoo methods modify state freely without a lock, they should only call other unsafe methods.
  • SafeFoo methods call UnsafeFoo methods inside a lock.

Its a little verbose, but it makes obvious errors, like calling unsafe methods outside a lock in a method which is supposed to be thread-safe, more apparent.