Integral $\int_0^1\frac{\ln\left(x+\sqrt2\right)}{\sqrt{2-x}\,\sqrt{1-x}\,\sqrt{\vphantom{1}x}}\mathrm dx$
For $a > 0$, let $b = \frac12 + \frac1a$ and $I(a)$ be the integral $$I(a) = \int_0^1 \frac{\log(a+x)}{\sqrt{x(1-x)(2-x)}}dx$$ Substitute $x$ by $\frac{1}{p+\frac12}$, it is easy to check we can rewrite $I(a)$ as
$$ I(a) = -\sqrt{2}\int_\infty^{\frac12}\frac{\log\left[a (p + b)/(p + \frac12)\right]}{\sqrt{4p^3 - p}} dp $$ Let $\wp(z), \zeta(z)$ and $\sigma(z)$ be the Weierstrass elliptic, zeta and sigma functions associated with the ODE:
$$\wp'(z)^2 = 4\wp(z)^3 - g_2 \wp(z) - g_3\quad\text{ for }\quad g_2 = 1 \;\text{ and }\; g_3 = 0.$$
In terms of $\wp(z)$, we can express $I(a)$ as
$$I(a) = \sqrt{2}\int_0^\omega \log\left[a \left(\frac{\wp(z) + b}{\wp(z) + \frac12}\right)\right] dz = \frac{1}{\sqrt{2}}\int_{-\omega}^\omega \log\left[a \left(\frac{\wp(z) + b}{\wp(z) + \frac12}\right)\right] dz $$
where $\;\displaystyle \omega = \int_\frac12^\infty \frac{dp}{\sqrt{4p^3 - p}} = \frac{\pi^{3/2}}{2\Gamma\left(\frac34\right)^2}\;$ is the half period for $\wp(z)$ lying on real axis. Since $g_3 = 0$, the double poles of $\wp(z)$ lies on a square lattice $\mathbb{L} = \{\; 2\omega ( m + i n ) : m, n \in \mathbb{Z} \;\}$ and and we can pick the other half period $\;\omega'$ as $\;i\omega$.
Notice $\wp(\pm i \omega) = -\frac12$. If we pick $u \in (0,\omega)$ such that $\wp(\pm i u) = -b$, the function inside the square brackets in above integral is an ellitpic function with zeros at $\pm i u + \mathbb{L}$ and poles at $\pm i \omega + \mathbb{L}$. We can express $I(a)$ in terms of $\sigma(z)$ as
$$I(a) = \frac{1}{\sqrt{2}}\int_{-\omega}^\omega \log\left[ C\frac{\sigma(z-iu)\sigma(z+iu)}{\sigma(z-i\omega)\sigma(z+i\omega)}\right] dz \quad\text{ where }\quad C = a\left(\frac{\sigma(-i\omega)\sigma(i\omega)}{\sigma(-iu)\sigma(iu)}\right). $$
Let $\varphi_{\pm}(\tau)$ be the integral $\displaystyle \int_{-\omega}^\omega \log\sigma(z+\tau) dz$ for $\Im(\tau) > 0$ and $< 0$ respectively. Notice $\sigma(z)$ has a simple zero at $z = 0$. We will choose the branch cut of $\log \sigma(z)$ there to be the ray along the negative real axis.
When we move $\tau$ around, as long as we don't cross the real axis, the line segment $[\tau-\omega,\tau+\omega]$ won't touch the branch cut and everything will be well behaved. We have
$$\begin{align} & \varphi_{\pm}(\tau)''' = -\wp(\tau+\omega) + \wp(\tau-\omega) = 0\\ \implies & \varphi_{\pm}(\tau)'' = \zeta(\tau+\omega) - \zeta(\tau-\omega) \quad\text{ is a constant}\\ \implies & \varphi_{\pm}(\tau)'' = 2 \zeta(\omega)\\ \implies & \varphi_{\pm}(\tau) = \zeta(\omega) \tau^2 + A_{\pm} \tau + B_{\pm} \quad\text{ for some constants } A_{\pm}, B_{\pm} \end{align} $$
Let $\eta = \zeta(\omega)$ and $\eta' = \zeta(\omega')$. For elliptic functions with general $g_2, g_3$, there is always an identity $$\eta \omega' - \omega \eta' = \frac{\pi i}{2}$$ as long as $\omega'$ is chosen to satisfy $\Im(\frac{\omega'}{\omega}) > 0$. In our case, $\omega' = i\omega$ and the symmetric of $\mathbb{L}$ forces $\eta = \frac{\pi}{4\omega}$. This implies
$$\varphi_{\pm}(\tau) = \frac{\pi}{4\omega}\tau^2 + A_{\pm}\tau + B_{\pm}$$
Because of the branch cut, $A_{+} \ne A_{-}$ and $B_{+} \ne B_{+}$. In fact, we can evaluate their differences as
$$\begin{align} A_{+} - A_{-} &= \lim_{\epsilon\to 0} \left( -\log\sigma(i\epsilon-\omega) + \log\sigma(-i\epsilon-\omega) \right) = - 2 \pi i\\ B_{+} - B_{-} &= \lim_{\epsilon\to 0} \int_{-\omega}^0 \left( \log\sigma(i\epsilon+z) - \log\sigma(-i\epsilon+z) \right) dz = 2\pi i\omega \end{align} $$ Apply this to our expression of $I(a)$, we get
$$\begin{align} I(a) &= \frac{1}{\sqrt{2}}\left(2\omega\log C + \varphi_{-}(-iu)+\varphi_{+}(iu)-\varphi_{-}(-i\omega)-\varphi_{+}(i\omega)\right)\\ &= \frac{1}{\sqrt{2}}\left\{ 2\omega\log\left[a\left(\frac{\sigma(-i\omega)\sigma(i\omega)}{\sigma(-iu)\sigma(iu)}\right)\right] + \frac{\pi}{2\omega}(\omega^2 - u^2) + 2\pi(u-\omega) \right\} \end{align} $$
Back to our original problem where $a = \sqrt{2} \iff b = \frac{1+\sqrt{2}}{2}$. One can use the duplication formula for $\wp(z)$ to vertify $u = \frac{\omega}{2}$. From this, we find: $$I(\sqrt{2}) = \sqrt{2}\omega\left\{ \log\left[\sqrt{2}\left(\frac{\sigma(-i\omega)\sigma(i\omega)}{\sigma(-i\frac{\omega}{2})\sigma(i\frac{\omega}{2})}\right)\right] - \frac{5\pi}{16}\right\} $$
It is known that $| \sigma(\pm i\omega) | = e^{\pi/8}\sqrt[4]{2}$. Furthermore, we have the identity:
$$\wp'(z) = - \frac{\sigma(2z)}{\sigma(z)^4} \quad\implies\quad \left|\sigma\left( \pm i\frac{\omega}{2} \right)\right| = \left|\frac{\sigma(\pm i \omega)}{\wp'\left(\pm i\frac{\omega}{2}\right)}\right|^{1/4} = \left(\frac{\sigma(\omega)}{1+\sqrt{2}}\right)^{1/4} $$ Combine all these, we get a result matching other answer.
$$\begin{align} I(\sqrt{2}) &= \sqrt{2}\omega\left\{\log\left[\sqrt{2}\sigma(\omega)^{3/2}\sqrt{1+\sqrt{2}}\right] - \frac{5\pi}{16}\right\}\\ &= \frac{\pi^{3/2}}{\sqrt{2}\Gamma\left(\frac34\right)^2}\left\{\frac78\log 2 + \frac12\log(\sqrt{2}+1) - \frac{\pi}{8} \right\} \end{align}$$
$$\frac{\pi^{3/2}}{8\,\sqrt2}\cdot\frac{7\ln2-\ln\left(17-12\,\sqrt2\right)-\pi}{\Gamma\left(\frac34\right)^2}$$
$\newcommand{\+}{^{\dagger}} \newcommand{\angles}[1]{\left\langle #1 \right\rangle} \newcommand{\braces}[1]{\left\lbrace #1 \right\rbrace} \newcommand{\bracks}[1]{\left\lbrack #1 \right\rbrack} \newcommand{\ceil}[1]{\,\left\lceil #1 \right\rceil\,} \newcommand{\dd}{{\rm d}} \newcommand{\down}{\downarrow} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\equalby}[1]{{#1 \atop {= \atop \vphantom{\huge A}}}} \newcommand{\expo}[1]{\,{\rm e}^{#1}\,} \newcommand{\fermi}{\,{\rm f}} \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,} \newcommand{\half}{{1 \over 2}} \newcommand{\ic}{{\rm i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\isdiv}{\,\left.\right\vert\,} \newcommand{\ket}[1]{\left\vert #1\right\rangle} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\pars}[1]{\left( #1 \right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,#2\,}\,} \newcommand{\sech}{\,{\rm sech}} \newcommand{\sgn}{\,{\rm sgn}} \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}} \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$ $\ds{\int_{0}^{1} {\ln\pars{x + \root{2}} \over \root{2 - x}\root{1 - x}\root{x}}\,\dd x:\ {\Large ?}}$
A '$\large\tt partial$' answer:
\begin{align} &\int_{0}^{1} {\ln\pars{x + \root{2}} \over \root{2 - x}\root{1 - x}\root{x}}\,\dd x \\[3mm]&= \int_{0}^{1/2} {\ln\pars{x + \root{2}} \over \root{2 - x}\root{1 - x}\root{x}}\,\dd x + \int_{1/2}^{1} {\ln\pars{x + \root{2}} \over \root{2 - x}\root{1 - x}\root{x}}\,\dd x \\[3mm]&= 2\int_{0}^{\root{2}/2} {\ln\pars{x^{2} + \root{2}} \over \root{2 - x^{2}}\root{1 - x^{2}}}\,\dd x - 2\int_{\root{2}/2}^{0} {\ln\pars{1 - x^{2} + \root{2}} \over \root{1 + x^{2}}\root{1 - x^{2}}}\,\dd x \\[3mm]&= 2\int_{0}^{\pi/4} {\ln\pars{\sin^{2}\pars{\theta} + \root{2}} \over \root{2 - \sin^{2}\pars{\theta}}}\,\dd\theta + 2\int_{0}^{\pi/4} {\ln\pars{1 + \root{2} - \sin^{2}\pars{\theta}} \over \root{1 + \sin^{2}\pars{\theta}}}\,\dd\theta \\[3mm]&= 2\int_{0}^{\pi/4} {\ln\pars{\sin^{2}\pars{\theta} + \root{2}} \over \root{1 + \cos^{2}\pars{\theta}}}\,\dd\theta + 2\int_{-\pi/2}^{-\pi/4} {\ln\pars{1 + \root{2} - \cos^{2}\pars{\theta}} \over \root{1 + \cos^{2}\pars{\theta}}}\,\dd\theta \\[3mm]&=2\int_{0}^{\pi/2} {\ln\pars{\sin^{2}\pars{\theta} + \root{2}} \over \root{1 + \cos^{2}\pars{\theta}}}\,\dd\theta =2\int_{0}^{\pi/2} {\ln\pars{\bracks{1 - \cos\pars{2\theta}}/2 + \root{2}} \over \root{1 + \bracks{1 + \cos\pars{2\theta}}/2}}\,\dd\theta \\[3mm]&=\int_{0}^{\pi} {\ln\pars{\bracks{2\root{2} + 1 - \cos\pars{\theta}}/2} \over \root{\bracks{3 + \cos\pars{\theta}}/2}}\,\dd\theta =\root{2}\int_{0}^{\pi} {\ln\pars{\root{2} + 1/2 - \cos\pars{\theta}/2} \over \root{3 + \cos\pars{\theta}}}\,\dd\theta \end{align} Mathematica can evaluate this integral ( it can not calculate the original one ):
I'm still struggling with the integral !!!