Is there a way to calculate 3D rotation on X and Y axis from a 4x4 matrix
Solution 1:
First read:
- Understanding 4x4 homogenous transform matrices
as I use terminology from there.
Well I was too lazy to equate the whole stuff for my environment but based on this:
- Computing Euler angles from a rotation matrix
The resulting 3D rotation sub matrix of m
for any rotation order will always have these therms:
(+/-)sin(a)
(+/-)sin(b)cos(a)
(+/-)cos(b)cos(a)
(+/-)sin(c)cos(a)
(+/-)cos(c)cos(a)
Only their sign and location will change with transform order and conventions. So to identify them do this:
-
let set some non trivial euler angles first
their
|sin|
,|cos|
values must be different so none of the 6 values will be the same otherwise this will not work !!!I chose these:
ex = 10 [deg] ey = 20 [deg] ez = 30 [deg]
-
compute rotation matrix
m
so apply 3 euler rotations on unit matrix in their order. In mine setup the resulting matrix looks like this:
double m[16] = { 0.813797652721405, 0.543838143348694,-0.204874128103256, 0, // Xx,Xy,Xz,0.0 -0.469846308231354, 0.823172926902771, 0.318795770406723, 0, // Yx,Yy,Yz,0.0 0.342020153999329,-0.163175910711288, 0.925416529178619, 0, // Zx,Zy,Zz,0.0 0 , 0 , 0 , 1 // Ox,Oy,Oz,1.0 };
note that I am using OpenGL conventions the basis vectors
X,Y,Z
and originO
are represented by the lines of matrix and the matrix is direct. -
identify
(+/-)sin(a)
thermthe
a
can be any of the euler angles so printsin
of them all:sin(ex) = 0.17364817766693034885171662676931 sin(ey) = 0.34202014332566873304409961468226 sin(ez) = 0.5
now see
m[8] = sin(ey)
so we found our therm... Now we know:ey = a = asin(m[8]);
-
identify
(+/-)???(?)*cos(a)
thermssimply print cos(?)*cos(ey) for the unused angles yet. so if
ey
is the 20 deg I print 10 and 30 deg ...sin(10 deg)*cos(20 deg) = 0.16317591116653482557414168661534 cos(10 deg)*cos(20 deg) = 0.92541657839832335306523309767123 sin(30 deg)*cos(20 deg) = 0.46984631039295419202705463866237 cos(30 deg)*cos(20 deg) = 0.81379768134937369284469321724839
when we look at the
m
again we can cross match:sin(ex)*cos(ey) = 0.16317591116653482557414168661534 = -m[9] cos(ex)*cos(ey) = 0.92541657839832335306523309767123 = +m[10] sin(ez)*cos(ey) = 0.46984631039295419202705463866237 = -m[4] cos(ez)*cos(ey) = 0.81379768134937369284469321724839 = +m[0]
from that we can compute the angles ...
sin(ex)*cos(ey) = -m[ 9] cos(ex)*cos(ey) = +m[10] sin(ez)*cos(ey) = -m[ 4] cos(ez)*cos(ey) = +m[ 0] ------------------------ sin(ex) = -m[ 9]/cos(ey) cos(ex) = +m[10]/cos(ey) sin(ez) = -m[ 4]/cos(ey) cos(ez) = +m[ 0]/cos(ey)
so finally:
--------------------------------------------- ey = asin(m[8]); ex = atan2( -m[ 9]/cos(ey) , +m[10]/cos(ey) ) ez = atan2( -m[ 4]/cos(ey) , +m[ 0]/cos(ey) ) ---------------------------------------------
And that is it. If you got different layout/conventions/transform order this approach still should work... Only the indexes and signs change. Here small C++/VCL OpenGL example I test this on (X,Y,Z
order):
//---------------------------------------------------------------------------
#include <vcl.h>
#include <math.h>
#pragma hdrstop
#include "Unit1.h"
#include "gl_simple.h"
//---------------------------------------------------------------------------
#pragma package(smart_init)
#pragma resource "*.dfm"
TForm1 *Form1;
bool _redraw=true; // need repaint?
//---------------------------------------------------------------------------
double m[16]= // uniform 4x4 matrix
{
1.0,0.0,0.0,0.0, // Xx,Xy,Xz,0.0
0.0,1.0,0.0,0.0, // Yx,Yy,Yz,0.0
0.0,0.0,1.0,0.0, // Zx,Zy,Zz,0.0
0.0,0.0,0.0,1.0 // Ox,Oy,Oz,1.0
};
double e[3]={0.0,0.0,0.0}; // euler angles x,y,z order
//---------------------------------------------------------------------------
const double deg=M_PI/180.0;
const double rad=180.0/M_PI;
void matrix2euler(double *e,double *m)
{
double c;
e[1]=asin(+m[ 8]);
c=cos(e[1]); if (fabs(c>1e-20)) c=1.0/c; else c=0.0;
e[0]=atan2(-m[ 9]*c,m[10]*c);
e[2]=atan2(-m[ 4]*c,m[ 0]*c);
}
//---------------------------------------------------------------------------
void gl_draw()
{
_redraw=false;
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glMatrixMode(GL_PROJECTION);
// glLoadIdentity();
glMatrixMode(GL_TEXTURE);
glLoadIdentity();
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslated(0.0,0.0,-10.0); // some distance from camera ...
glDisable(GL_DEPTH_TEST);
glDisable(GL_TEXTURE_2D);
int i;
// draw source matrix:
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glTranslated(-1.0,0.0,0.0); // source matrix on the left
glMultMatrixd(m);
glBegin(GL_LINES);
glColor3f(1.0,0.0,0.0); glVertex3d(0.0,0.0,0.0); glVertex3d(1.0,0.0,0.0);
glColor3f(0.0,1.0,0.0); glVertex3d(0.0,0.0,0.0); glVertex3d(0.0,1.0,0.0);
glColor3f(0.0,0.0,1.0); glVertex3d(0.0,0.0,0.0); glVertex3d(0.0,0.0,1.0);
glEnd();
glPopMatrix();
// draw source matrix:
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glTranslated(m[12],m[13],m[14]); // source matrix in the middle
glBegin(GL_LINES);
glColor3f(1.0,0.0,0.0); glVertex3d(0.0,0.0,0.0); glVertex3dv(m+0);
glColor3f(0.0,1.0,0.0); glVertex3d(0.0,0.0,0.0); glVertex3dv(m+4);
glColor3f(0.0,0.0,1.0); glVertex3d(0.0,0.0,0.0); glVertex3dv(m+8);
glEnd();
glPopMatrix();
// draw euler angles
matrix2euler(e,m);
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glTranslated(+1.0,0.0,0.0); // euler angles on the right
glRotated(e[0]*rad,1.0,0.0,0.0);
glRotated(e[1]*rad,0.0,1.0,0.0);
glRotated(e[2]*rad,0.0,0.0,1.0);
glBegin(GL_LINES);
glColor3f(1.0,0.0,0.0); glVertex3d(0.0,0.0,0.0); glVertex3d(1.0,0.0,0.0);
glColor3f(0.0,1.0,0.0); glVertex3d(0.0,0.0,0.0); glVertex3d(0.0,1.0,0.0);
glColor3f(0.0,0.0,1.0); glVertex3d(0.0,0.0,0.0); glVertex3d(0.0,0.0,1.0);
glEnd();
glPopMatrix();
// glFlush();
glFinish();
SwapBuffers(hdc);
}
//---------------------------------------------------------------------------
__fastcall TForm1::TForm1(TComponent* Owner):TForm(Owner)
{
gl_init(Handle);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glRotated(10.0,1.0,0.0,0.0);
glRotated(20.0,0.0,1.0,0.0);
glRotated(30.0,0.0,0.0,1.0);
glGetDoublev(GL_MODELVIEW_MATRIX,m);
}
//---------------------------------------------------------------------------
void __fastcall TForm1::FormDestroy(TObject *Sender)
{
gl_exit();
}
//---------------------------------------------------------------------------
void __fastcall TForm1::FormPaint(TObject *Sender)
{
gl_draw();
}
//---------------------------------------------------------------------------
void __fastcall TForm1::Timer1Timer(TObject *Sender)
{
if (_redraw) gl_draw();
}
//---------------------------------------------------------------------------
void __fastcall TForm1::FormResize(TObject *Sender)
{
gl_resize(ClientWidth,ClientHeight);
_redraw=true;
}
//---------------------------------------------------------------------------
void __fastcall TForm1::FormKeyDown(TObject *Sender, WORD &Key, TShiftState Shift)
{
// Caption=Key;
const double da=5.0;
if (Key==37){ _redraw=true; glMatrixMode(GL_MODELVIEW); glPushMatrix(); glLoadMatrixd(m); glRotated(+da,0.0,1.0,0.0); glGetDoublev(GL_MODELVIEW_MATRIX,m); glPopMatrix(); }
if (Key==39){ _redraw=true; glMatrixMode(GL_MODELVIEW); glPushMatrix(); glLoadMatrixd(m); glRotated(-da,0.0,1.0,0.0); glGetDoublev(GL_MODELVIEW_MATRIX,m); glPopMatrix(); }
if (Key==38){ _redraw=true; glMatrixMode(GL_MODELVIEW); glPushMatrix(); glLoadMatrixd(m); glRotated(+da,1.0,0.0,0.0); glGetDoublev(GL_MODELVIEW_MATRIX,m); glPopMatrix(); }
if (Key==40){ _redraw=true; glMatrixMode(GL_MODELVIEW); glPushMatrix(); glLoadMatrixd(m); glRotated(-da,1.0,0.0,0.0); glGetDoublev(GL_MODELVIEW_MATRIX,m); glPopMatrix(); }
}
//---------------------------------------------------------------------------
The only important stuff from it is matrix2euler
function converting matrix m
to euler angles in x,y,z
order. It renders 3 coordinate systems axises. On the left is m
used as modelview matrix, in the middle are basis vectors of m
using identity modelview and on the right is modelview constructed by the euler angles computed ...
All 3 should match. If the left and middle are not a match then you got different convention of matrix or layout.
Here preview for the (10,20,30) [deg]
test case:
It matches even after many rotations (arrow keys)...
The gl_simple.h
can be found here:
- complete GL+GLSL+VAO/VBO C++ example
PS. Depending on the platform/environment the computation might need some edge case handling like rounded magnitude for asin
bigger than 1
, division by zero etc. Also atan2
has its quirks ...
[Edit1] Here the ultimate C++ example which does all this automatically:
//---------------------------------------------------------------------------
enum _euler_cfg_enum
{
_euler_cfg_a=0,
_euler_cfg_b,
_euler_cfg_c,
_euler_cfg__sina,
_euler_cfg_ssina,
_euler_cfg__sinb_cosa,
_euler_cfg_ssinb_cosa,
_euler_cfg__cosb_cosa,
_euler_cfg_scosb_cosa,
_euler_cfg__sinc_cosa,
_euler_cfg_ssinc_cosa,
_euler_cfg__cosc_cosa,
_euler_cfg_scosc_cosa,
_euler_cfgs
};
//---------------------------------------------------------------------------
void matrix2euler_init(double *e,double *m,int *cfg) // cross match euler angles e[3] and resulting m[16] transform matrix into cfg[_euler_cfgs]
{
int i,j;
double a,tab[4];
const double _zero=1e-6;
for (i=0;i<_euler_cfgs;i++) cfg[i]=-1; // clear cfg
// find (+/-)sin(a)
for (i=0;i<3;i++) // test all angles in e[]
{
a=sin(e[i]);
for (j=0;j<16;j++) // test all elements in m[]
if (fabs(fabs(a)-fabs(m[j]))<=_zero) // find match in |m[j]| = |sin(e[i])|
{ // store configuration
cfg[_euler_cfg_a]=i;
cfg[_euler_cfg__sina]=j;
cfg[_euler_cfg_ssina]=(a*m[j]<0.0);
j=-1; break;
}
if (j<0){ i=-1; break; } // stop on match found
}
if (i>=0){ cfg[0]=-1; return; } // no match !!!
// find (+/-)???(?)*cos(a)
a=cos(e[cfg[_euler_cfg_a]]);
i=0; if (i==cfg[_euler_cfg_a]) i++; tab[0]=sin(e[i])*a; tab[1]=cos(e[i])*a; cfg[_euler_cfg_b]=i;
i++; if (i==cfg[_euler_cfg_a]) i++; tab[2]=sin(e[i])*a; tab[3]=cos(e[i])*a; cfg[_euler_cfg_c]=i;
for (i=0;i<4;i++)
{
a=tab[i];
for (j=0;j<16;j++) // test all elements in m[]
if (fabs(fabs(a)-fabs(m[j]))<=_zero) // find match in |m[j]| = |tab[i]|
{ // store configuration
cfg[_euler_cfg__sinb_cosa+i+i]=j;
cfg[_euler_cfg_ssinb_cosa+i+i]=(a*m[j]<0.0);
j=-1; break;
}
if (j>=0){ cfg[0]=-1; return; } // no match !!!
}
}
//---------------------------------------------------------------------------
void matrix2euler(double *e,double *m,int *cfg) // compute euler angles e[3] from transform matrix m[16] using confing cfg[_euler_cfgs]
{
double c;
//-----angle------ --------------sign-------------- ----------index----------
e[cfg[_euler_cfg_a]]=asin ((cfg[_euler_cfg_ssina]?-1.0:+1.0) *m[cfg[_euler_cfg__sina ]]);
c=cos(e[cfg[_euler_cfg_a]]); if (fabs(c>1e-20)) c=1.0/c; else c=0.0;
e[cfg[_euler_cfg_b]]=atan2((cfg[_euler_cfg_ssinb_cosa]?-c:+c)*m[cfg[_euler_cfg__sinb_cosa]],
(cfg[_euler_cfg_scosb_cosa]?-c:+c)*m[cfg[_euler_cfg__cosb_cosa]]);
e[cfg[_euler_cfg_c]]=atan2((cfg[_euler_cfg_ssinc_cosa]?-c:+c)*m[cfg[_euler_cfg__sinc_cosa]],
(cfg[_euler_cfg_scosc_cosa]?-c:+c)*m[cfg[_euler_cfg__cosc_cosa]]);
}
//---------------------------------------------------------------------------
Usage:
const double deg=M_PI/180.0;
const double rad=180.0/M_PI;
// variables
double e[3],m[16];
int euler_cfg[_euler_cfgs];
// init angles
e[0]=10.0*deg;
e[1]=20.0*deg;
e[2]=30.0*deg;
// compute coresponding rotation matrix
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glRotated(e[0]*rad,1.0,0.0,0.0);
glRotated(e[1]*rad,0.0,1.0,0.0);
glRotated(e[2]*rad,0.0,0.0,1.0);
glGetDoublev(GL_MODELVIEW_MATRIX,m);
// cross match e,m -> euler_cfg
matrix2euler_init(e,m,euler_cfg);
// now we can use
matrix2euler(e,m,euler_cfg);
This works for any order of transformation and or convention/layout. the init is called just once and then you can use the conversion for any transform matrix... You can also write your own optimized version based on the euler_cfg
results for your environment.