Algorithm to find two repeated numbers in an array, without sorting

There is a O(n) solution if you know what the possible domain of input is. For example if your input array contains numbers between 0 to 100, consider the following code.

bool flags[100];
for(int i = 0; i < 100; i++)
    flags[i] = false;

for(int i = 0; i < input_size; i++)
    if(flags[input_array[i]])
         return input_array[i];
    else       
        flags[input_array[i]] = true;

Of course there is the additional memory but this is the fastest.


OK, seems I just can't give it a rest :)

Simplest solution

int A[N] = {...};

int signed_1(n) { return n%2<1 ? +n : -n;  } // 0,-1,+2,-3,+4,-5,+6,-7,...
int signed_2(n) { return n%4<2 ? +n : -n;  } // 0,+1,-2,-3,+4,+5,-6,-7,...

long S1 = 0;  // or int64, or long long, or some user-defined class
long S2 = 0;  // so that it has enough bits to contain sum without overflow

for (int i=0; i<N-2; ++i)
{
   S1 += signed_1(A[i]) - signed_1(i);
   S2 += signed_2(A[i]) - signed_2(i);
} 

for (int i=N-2; i<N; ++i)
{
   S1 += signed_1(A[i]);
   S2 += signed_2(A[i]);
} 

S1 = abs(S1);
S2 = abs(S2);

assert(S1 != S2);  // this algorithm fails in this case

p = (S1+S2)/2;
q = abs(S1-S2)/2;

One sum (S1 or S2) contains p and q with the same sign, the other sum - with opposite signs, all other members are eliminated.
S1 and S2 must have enough bits to accommodate sums, the algorithm does not stand for overflow because of abs().

if abs(S1)==abs(S2) then the algorithm fails, though this value will still be the difference between p and q (i.e. abs(p - q) == abs(S1)).

Previous solution

I doubt somebody will ever encounter such a problem in the field ;)
and I guess, I know the teacher's expectation:

Lets take array {0,1,2,...,n-2,n-1},
The given one can be produced by replacing last two elements n-2 and n-1 with unknown p and q (less order)

so, the sum of elements will be (n-1)n/2 + p + q - (n-2) - (n-1)
the sum of squares (n-1)n(2n-1)/6 + p^2 + q^2 - (n-2)^2 - (n-1)^2

Simple math remains:

  (1)  p+q = S1  
  (2)  p^2+q^2 = S2

Surely you won't solve it as math classes teach to solve square equations.

First, calculate everything modulo 2^32, that is, allow for overflow.
Then check pairs {p,q}: {0, S1}, {1, S1-1} ... against expression (2) to find candidates (there might be more than 2 due to modulo and squaring)
And finally check found candidates if they really are present in array twice.