NumPy: calculate averages with NaNs removed
Solution 1:
I think what you want is a masked array:
dat = np.array([[1,2,3], [4,5,nan], [nan,6,nan], [nan,nan,nan]])
mdat = np.ma.masked_array(dat,np.isnan(dat))
mm = np.mean(mdat,axis=1)
print mm.filled(np.nan) # the desired answer
Edit: Combining all of the timing data
from timeit import Timer
setupstr="""
import numpy as np
from scipy.stats.stats import nanmean
dat = np.random.normal(size=(1000,1000))
ii = np.ix_(np.random.randint(0,99,size=50),np.random.randint(0,99,size=50))
dat[ii] = np.nan
"""
method1="""
mdat = np.ma.masked_array(dat,np.isnan(dat))
mm = np.mean(mdat,axis=1)
mm.filled(np.nan)
"""
N = 2
t1 = Timer(method1, setupstr).timeit(N)
t2 = Timer("[np.mean([l for l in d if not np.isnan(l)]) for d in dat]", setupstr).timeit(N)
t3 = Timer("np.array([r[np.isfinite(r)].mean() for r in dat])", setupstr).timeit(N)
t4 = Timer("np.ma.masked_invalid(dat).mean(axis=1)", setupstr).timeit(N)
t5 = Timer("nanmean(dat,axis=1)", setupstr).timeit(N)
print 'Time: %f\tRatio: %f' % (t1,t1/t1 )
print 'Time: %f\tRatio: %f' % (t2,t2/t1 )
print 'Time: %f\tRatio: %f' % (t3,t3/t1 )
print 'Time: %f\tRatio: %f' % (t4,t4/t1 )
print 'Time: %f\tRatio: %f' % (t5,t5/t1 )
Returns:
Time: 0.045454 Ratio: 1.000000
Time: 8.179479 Ratio: 179.950595
Time: 0.060988 Ratio: 1.341755
Time: 0.070955 Ratio: 1.561029
Time: 0.065152 Ratio: 1.433364
Solution 2:
If performance matters, you should use bottleneck.nanmean()
instead:
http://pypi.python.org/pypi/Bottleneck