Split a number into its digits with Haskell
Have you heard of div and mod?
You'll probably want to reverse the list of numbers if you want to treat the most significant digit first. Converting the number into a string is an impaired way of doing things.
135 `div` 10 = 13
135 `mod` 10 = 5
Generalize into a function:
digs :: Integral x => x -> [x]
digs 0 = []
digs x = digs (x `div` 10) ++ [x `mod` 10]
Or in reverse:
digs :: Integral x => x -> [x]
digs 0 = []
digs x = x `mod` 10 : digs (x `div` 10)
This treats 0
as having no digits. A simple wrapper function can deal with that special case if you want to.
Note that this solution does not work for negative numbers (the input x
must be integral, i.e. a whole number).
digits :: Integer -> [Int]
digits = map (read . (:[])) . show
or you can return it into []
:
digits :: Integer -> [Int]
digits = map (read . return) . show
or, with Data.Char.digitToInt:
digits :: Integer -> [Int]
digits = map digitToInt . show
the same as Daniel's really, but point free and uses Int, because a digit shouldn't really exceed maxBound :: Int
.
You could also just reuse digits
from Hackage.
Using the same technique used in your post, you can do:
digits :: Integer -> [Int]
digits n = map (\x -> read [x] :: Int) (show n)
See it in action:
Prelude> digits 123
[1,2,3]
Does that help?
You can use
digits = map (`mod` 10) . reverse . takeWhile (> 0) . iterate (`div` 10)
or for reverse order
rev_digits = map (`mod` 10) . takeWhile (> 0) . iterate (`div` 10)
The iterate part generates an infinite list dividing the argument in every step by 10, so 12345 becomes [12345,1234,123,12,1,0,0..]. The takeWhile part takes only the interesting non-null part of the list. Then we reverse (if we want to) and take the last digit of each number of the list.
I used point-free style here, so you can imagine an invisible argument n on both sides of the "equation". However, if you want to write it that way, you have to substitute the top level .
by $
:
digits n = map(`mod` 10) $ reverse $ takeWhile (> 0) $ iterate (`div`10) n