Check if two 3D numpy arrays contain overlapping 2D arrays

Solution 1:

We could leverage views using a helper function that I have used across few Q&As. To get the presence of subarrays, we could use np.isin on the views or use a more laborious one with np.searchsorted.

Approach #1 : Using np.isin -

# https://stackoverflow.com/a/45313353/ @Divakar
def view1D(a, b): # a, b are arrays
    a = np.ascontiguousarray(a)
    b = np.ascontiguousarray(b)
    void_dt = np.dtype((np.void, a.dtype.itemsize * a.shape[1]))
    return a.view(void_dt).ravel(),  b.view(void_dt).ravel()

def isin_nd(a,b):
    # a,b are the 3D input arrays to give us "isin-like" functionality across them
    A,B = view1D(a.reshape(a.shape[0],-1),b.reshape(b.shape[0],-1))
    return np.isin(A,B)

Approach #2 : We could also leverage np.searchsorted upon the views -

def isin_nd_searchsorted(a,b):
    # a,b are the 3D input arrays
    A,B = view1D(a.reshape(a.shape[0],-1),b.reshape(b.shape[0],-1))
    sidx = A.argsort()
    sorted_index = np.searchsorted(A,B,sorter=sidx)
    sorted_index[sorted_index==len(A)] = len(A)-1
    idx = sidx[sorted_index]
    return A[idx] == B

So, these two solutions give us the mask of presence of each of the subarrays from a in b. Hence, to get our desired count, it would be - isin_nd(a,b).sum() or isin_nd_searchsorted(a,b).sum().

Sample run -

In [71]: # Setup with 3 common "subarrays"
    ...: np.random.seed(0)
    ...: a = np.random.randint(0,9,(10,4,5))
    ...: b = np.random.randint(0,9,(7,4,5))
    ...: 
    ...: b[1] = a[4]
    ...: b[3] = a[2]
    ...: b[6] = a[0]

In [72]: isin_nd(a,b).sum()
Out[72]: 3

In [73]: isin_nd_searchsorted(a,b).sum()
Out[73]: 3

Timings on large arrays -

In [74]: # Setup
    ...: np.random.seed(0)
    ...: a = np.random.randint(0,9,(100,100,100))
    ...: b = np.random.randint(0,9,(100,100,100))
    ...: idxa = np.random.choice(range(len(a)), len(a)//2, replace=False)
    ...: idxb = np.random.choice(range(len(b)), len(b)//2, replace=False)
    ...: a[idxa] = b[idxb]

# Verify output
In [82]: np.allclose(isin_nd(a,b),isin_nd_searchsorted(a,b))
Out[82]: True

In [75]: %timeit isin_nd(a,b).sum()
10 loops, best of 3: 31.2 ms per loop

In [76]: %timeit isin_nd_searchsorted(a,b).sum()
100 loops, best of 3: 1.98 ms per loop