Evaluate $\int_{0}^{\infty}\dfrac{\mathrm dx}{(e^{\pi x}+e^{-\pi x})(16+x^2)}$
Find the integral
$$I=\int_{0}^{\infty}\dfrac{1}{(e^{\pi x}+e^{-\pi x})(16+x^2)}dx$$
My try:let $x=-t$
$$I=\int_{-\infty}^{0}\dfrac{1}{(e^{\pi x}+e^{-\pi x})(16+x^2)}dx$$ so $$2I=\int_{-\infty}^{\infty}\dfrac{1}{(e^{\pi x}+e^{-\pi x})(16+x^2)}dx$$
Then I can't,Thank you
Solution 1:
You can use Parseval's theorem, which states that, given two functions $f(x)$ and $g(x)$, each having Fourier transforms $\hat{f}(k)$ and $\hat{g}(k)$, respectively (and satisfying certain integrability conditions that are satisfied here), the following relation holds:
$$\int_{-\infty}^{\infty} dx \, f(x) g^*(x) = \frac{1}{2 \pi} \int_{-\infty}^{\infty} dk \, \hat{f}(k) \, \hat{g}^*(k)$$
where * is complex conjugation. Here, $f(x) = \text{sech}{(\pi x)}$ and $g(x) = (16+x^2)^{-1}$. The FT $\hat{g}(k)$ is very well known and I will not go into detail here about it:
$$\hat{g}(k) = \frac{\pi}{4} e^{-4 |k|}$$
The FT $\hat{f}(k)$, on the other hand, is not as well known, but should be, as it is form-preserving. To maintain the flow of this derivation, I will hold off on the derivation of the following until later:
$$\hat{f}(k) = \text{sech}{(k/2)}$$
Let $I$ be the original integral. Obviously, the integrand of $I$ is even and we may therefore extend the integration interval to the entire real line. Thus
$$\begin{align}I &= \frac14 \int_{-\infty}^{\infty} dx \,\frac{\text{sech}{(\pi x)}}{16+x^2}\\ &= \frac{1}{8 \pi} \int_{-\infty}^{\infty} dk \, \text{sech}{\frac{k}{2}} \frac{\pi}{4} e^{-4 |k|}\\ &=\frac{1}{16} \int_{-\infty}^{\infty} dk \frac{e^{-4 |k|}}{e^{k/2}+e^{-k/2}} \\ &= \frac18 \int_0^{\infty} dk \frac{e^{-9 k/2}}{1+e^{-k}}\\&=\frac18 \sum_{m=0}^{\infty} \frac{(-1)^m}{m+\frac{9}{2}}\end{align}$$
Let
$$S = \sum_{m=0}^{\infty} \frac{(-1)^m}{m+\frac{9}{2}}$$
We may evaluate this sum using the residue theorem. Note that
$$\sum_{m=-\infty}^{\infty} \frac{(-1)^m}{m+\frac{9}{2}} = 2 S + 4 \left (1-\frac13+\frac15-\frac17\right)$$
By the residue theorem, the sum on the left is simply
$$-\operatorname*{Res}_{z=-9/2}[ \pi \, \csc{\pi z}] = \pi$$
Therefore the integral is
$$\int_0^{\infty} \frac{dx}{\left (e^{\pi x}+e^{-\pi x}\right) (16+x^2)} = \frac{S}{8} = \frac{\pi}{16}-\frac{19}{105} \approx 0.015397$$
ADDENDUM
The FT of $\text{sech}{(\pi x)}$ may also be derived using the residue theorem. We simply set up the integral as usual and comvert it into a sum as follows:
$$\begin{align}\int_{-\infty}^{\infty} dx \, \text{sech}{(\pi x)} \, e^{i k x} &= 2 \int_{-\infty}^{\infty} dx \frac{e^{i k x}}{e^{\pi x}+e^{-\pi x}}\\ &= 2 \int_{-\infty}^0 dx \frac{e^{i k x}}{e^{\pi x}+e^{-\pi x}} + 2 \int_0^{\infty}dx \frac{e^{i k x}}{e^{\pi x}+e^{-\pi x}}\\ &= 2 \sum_{m=0}^{\infty} (-1)^m \left [\int_0^{\infty}dx \, e^{-[(2 m+1) \pi+i k] x} +\int_0^{\infty}dx \, e^{-[(2 m+1) \pi-i k] x} \right ] \\ &= 2 \sum_{m=0}^{\infty} (-1)^m \left [\frac{1}{(2 m+1) \pi-i k} + \frac{1}{(2 m+1) \pi+i k} \right ]\\ &= 4\pi \sum_{m=0}^{\infty} \frac{(-1)^m (2 m+1)}{(2 m+1)^2 \pi^2+k^2}\\ &= \frac{1}{2 \pi}\sum_{m=-\infty}^{\infty} \frac{(-1)^m (2 m+1)}{\left (m+\frac12\right)^2+\left(\frac{k}{2 \pi}\right)^2} \end{align}$$
By the residue theorem, the sum is equal to the negative sum of the residues at the non-integer poles of
$$\pi \csc{(\pi z)} \frac{1}{2 \pi}\frac{2 z+1}{\left ( z+\frac12\right)^2+\left (\frac{k}{2 \pi}\right)^2}$$
which are at $z_{\pm}=-\frac12 \pm i \frac{k}{2 \pi}$. The sum is therefore
$$-\frac12\csc{(\pi z_+)} - \frac12 \csc{(\pi z_-)} = -\Re{\left [\frac{1}{\sin{\pi \left (-\frac12+i \frac{k}{2 \pi}\right )}}\right ]} = \text{sech}{\left ( \frac{k}{2}\right)}$$
Solution 2:
Let's compute $\newcommand{\sech}{\mathrm{sech}}(-1)^n\int_{-\infty}^\infty\frac{\sech(n\pi x)}{x^2+1}\mathrm{d}x$ .
$\sech(n\pi x)$ has simple poles at $x=\frac{2k+1}{2n}i$, with residue $\frac{(-1)^k}{n\pi i}$ .
$\frac1{x^2+1}$ has simple poles at $x=\pm i$, with residue $\frac1{\pm2i}$ .
$\hspace{8mm}$
Note that the integrals along the vertical segments vanish at $\infty$.
The integral along the upper rectangular contour is the integral in question: $\int_{-\infty}^\infty\frac{\sech(n\pi x)}{x^2+1}\mathrm{d}x$, minus the Principal Value integral along the red path: $\color{#C00000}{\int_{-\infty+i}^{\infty+i}\frac{\sech(n\pi x)}{x^2+1}\mathrm{d}x}$, minus $\pi i$ times the residue at $x=i$: $\color{#00A000}{\pi i\times(-1)^{n}\frac1{2i}=(-1)^{n}\frac\pi2}$. This is also $2\pi i$ times the sum of the residues inside the contour: $\color{#0000FF}{\sum\limits_{k=0}^{n-1}\frac{(-1)^k}{n}\raise{6pt}{\frac2{1-\left(\frac{2k+1}{2n}\right)^2}}}$ .
The integral along the upper rectangular contour is the integral in question: $\int_{-\infty}^\infty\frac{\sech(n\pi x)}{x^2+1}\mathrm{d}x$, minus the Principal Value integral along the red path: $\color{#C00000}{\int_{-\infty-i}^{\infty-i}\frac{\sech(n\pi x)}{1+x^2}\mathrm{d}x}$, plus $\pi i$ times the residue at $x=-i$: $\color{#00A000}{\pi i\times-(-1)^{n}\frac1{2i}=-(-1)^{n}\frac\pi2}$. This is also $-2\pi i$ times the sum of the residues inside the contour: $\color{#0000FF}{\sum\limits_{k=0}^{n-1}\frac{(-1)^k}{n}\raise{6pt}{\frac2{1-\left(\frac{2k+1}{2n}\right)^2}}}$ .
Putting these together gives
$$
\begin{align}
&\int_{-\infty}^\infty\frac{\sech(n\pi x)}{x^2+1}\mathrm{d}x\\
&=\frac12\left(
\color{#C00000}{(-1)^n\int_{-\infty}^\infty\frac{\sech(n\pi x)}{x^2+2ix}\mathrm{d}x}
+\color{#00A000}{(-1)^n\frac\pi2}
+\color{#0000FF}{\sum_{k=0}^{n-1}\frac{(-1)^k}{n}\frac2{1-\left(\frac{2k+1}{2n}\right)^2}}
\right)\\
&+\frac12\left(
\color{#C00000}{(-1)^n\int_{-\infty}^\infty\frac{\sech(n\pi x)}{x^2-2ix}\mathrm{d}x}
+\color{#00A000}{(-1)^n\frac\pi2}
+\color{#0000FF}{\sum_{k=0}^{n-1}\frac{(-1)^k}{n}\frac2{1-\left(\frac{2k+1}{2n}\right)^2}}
\right)\\
&=(-1)^n\int_{-\infty}^\infty\frac{\sech(n\pi x)}{x^2+4}\mathrm{d}x
+(-1)^n\frac\pi2
+8n\sum_{k=0}^{n-1}\frac{(-1)^k}{(2n)^2-(2k+1)^2}\\
&=\small(-1)^n\left(\frac12\int_{-\infty}^\infty\frac{\sech(2n\pi x)}{x^2+1}\mathrm{d}x
+\frac\pi2\right)
+2\sum_{k=0}^{n-1}(-1)^k\left(\frac1{2n+2k+1}+\frac1{2n-2k-1}\right)\\
&=\small(-1)^n\left(\frac12\int_{-\infty}^\infty\frac{\sech(2n\pi x)}{x^2+1}\mathrm{d}x
+\frac\pi2
-4\sum_{k=0}^{n-1}(-1)^k\frac1{2k+1}+2\sum_{k=0}^{2n-1}(-1)^k\frac1{2k+1}\right)\tag{1}
\end{align}
$$
Rearranging $(1)$ yields
$$
\begin{align}
&(-1)^n\int_{-\infty}^\infty\frac{\sech(n\pi x)}{x^2+1}\mathrm{d}x
+4\sum_{k=0}^{n-1}(-1)^k\frac1{2k+1}
-\pi\\
&=\frac12\left(
\int_{-\infty}^\infty\frac{\sech(2n\pi x)}{x^2+1}\mathrm{d}x
+4\sum_{k=0}^{2n-1}(-1)^k\frac1{2k+1}
-\pi
\right)\\[6pt]
&\to0\tag{2}
\end{align}
$$
Therefore,
$$
(-1)^n\int_{-\infty}^\infty\frac{\sech(n\pi x)}{x^2+1}\mathrm{d}x
=\pi-4\sum_{k=0}^{n-1}(-1)^k\frac1{2k+1}\tag{3}
$$
Now, applying $(3)$, with $n=4$, to the question:
$$
\begin{align}
\int_0^\infty\frac{\mathrm{d}x}{\left(e^{\pi x}+e^{-\pi x}\right)\left(16+x^2\right)}
&=\frac14\int_{-\infty}^\infty\frac{\mathrm{sech}(\pi x)\,\mathrm{d}x}{16+x^2}\\
&=\frac1{16}\int_{-\infty}^\infty\frac{\mathrm{sech}(4\pi x)\,\mathrm{d}x}{1+x^2}\\
&=\frac\pi{16}-\frac14\left(1-\frac13+\frac15-\frac17\right)\\
&=\frac\pi{16}-\frac{19}{105}\tag{4}
\end{align}
$$