Probability distribution in Python
I have a bunch of keys that each have an unlikeliness variable. I want to randomly choose one of these keys, yet I want it to be more unlikely for unlikely (key, values) to be chosen than a less unlikely (a more likely) object. I am wondering if you would have any suggestions, preferably an existing python module that I could use, else I will need to make it myself.
I have checked out the random module; it does not seem to provide this.
I have to make such choices many millions of times for 1000 different sets of objects each containing 2,455 objects. Each set will exchange objects among each other so the random chooser needs to be dynamic. With 1000 sets of 2,433 objects, that is 2,433 million objects; low memory consumption is crucial. And since these choices are not the bulk of the algorithm, I need this process to be quite fast; CPU-time is limited.
Thx
Update:
Ok, I tried to consider your suggestions wisely, but time is so limited...
I looked at the binary search tree approach and it seems too risky (complex and complicated). The other suggestions all resemble the ActiveState recipe. I took it and modified it a little in the hope of making more efficient:
def windex(dict, sum, max):
'''an attempt to make a random.choose() function that makes
weighted choices accepts a dictionary with the item_key and
certainty_value as a pair like:
>>> x = [('one', 20), ('two', 2), ('three', 50)], the
maximum certainty value (max) and the sum of all certainties.'''
n = random.uniform(0, 1)
sum = max*len(list)-sum
for key, certainty in dict.iteritems():
weight = float(max-certainty)/sum
if n < weight:
break
n = n - weight
return key
I am hoping to get an efficiency gain from dynamically maintaining the sum of certainties and the maximum certainty. Any further suggestions are welcome. You guys saves me so much time and effort, while increasing my effectiveness, it is crazy. Thx! Thx! Thx!
Update2:
I decided to make it more efficient by letting it choose more choices at once. This will result in an acceptable loss in precision in my algo for it is dynamic in nature. Anyway, here is what I have now:
def weightedChoices(dict, sum, max, choices=10):
'''an attempt to make a random.choose() function that makes
weighted choices accepts a dictionary with the item_key and
certainty_value as a pair like:
>>> x = [('one', 20), ('two', 2), ('three', 50)], the
maximum certainty value (max) and the sum of all certainties.'''
list = [random.uniform(0, 1) for i in range(choices)]
(n, list) = relavate(list.sort())
keys = []
sum = max*len(list)-sum
for key, certainty in dict.iteritems():
weight = float(max-certainty)/sum
if n < weight:
keys.append(key)
if list: (n, list) = relavate(list)
else: break
n = n - weight
return keys
def relavate(list):
min = list[0]
new = [l - min for l in list[1:]]
return (min, new)
I haven't tried it out yet. If you have any comments/suggestions, please do not hesitate. Thx!
Update3:
I have been working all day on a task-tailored version of Rex Logan's answer. Instead of a 2 arrays of objects and weights, it is actually a special dictionary class; which makes things quite complex since Rex's code generates a random index... I also coded a test case that kind of resembles what will happen in my algo (but I can't really know until I try!). The basic principle is: the more a key is randomly generated often, the more unlikely it will be generated again:
import random, time
import psyco
psyco.full()
class ProbDict():
"""
Modified version of Rex Logans RandomObject class. The more a key is randomly
chosen, the more unlikely it will further be randomly chosen.
"""
def __init__(self,keys_weights_values={}):
self._kw=keys_weights_values
self._keys=self._kw.keys()
self._len=len(self._keys)
self._findSeniors()
self._effort = 0.15
self._fails = 0
def __iter__(self):
return self.next()
def __getitem__(self, key):
return self._kw[key]
def __setitem__(self, key, value):
self.append(key, value)
def __len__(self):
return self._len
def next(self):
key=self._key()
while key:
yield key
key = self._key()
def __contains__(self, key):
return key in self._kw
def items(self):
return self._kw.items()
def pop(self, key):
try:
(w, value) = self._kw.pop(key)
self._len -=1
if w == self._seniorW:
self._seniors -= 1
if not self._seniors:
#costly but unlikely:
self._findSeniors()
return [w, value]
except KeyError:
return None
def popitem(self):
return self.pop(self._key())
def values(self):
values = []
for key in self._keys:
try:
values.append(self._kw[key][1])
except KeyError:
pass
return values
def weights(self):
weights = []
for key in self._keys:
try:
weights.append(self._kw[key][0])
except KeyError:
pass
return weights
def keys(self, imperfect=False):
if imperfect: return self._keys
return self._kw.keys()
def append(self, key, value=None):
if key not in self._kw:
self._len +=1
self._kw[key] = [0, value]
self._keys.append(key)
else:
self._kw[key][1]=value
def _key(self):
for i in range(int(self._effort*self._len)):
ri=random.randint(0,self._len-1) #choose a random object
rx=random.uniform(0,self._seniorW)
rkey = self._keys[ri]
try:
w = self._kw[rkey][0]
if rx >= w: # test to see if that is the value we want
w += 1
self._warnSeniors(w)
self._kw[rkey][0] = w
return rkey
except KeyError:
self._keys.pop(ri)
# if you do not find one after 100 tries then just get a random one
self._fails += 1 #for confirming effectiveness only
for key in self._keys:
if key in self._kw:
w = self._kw[key][0] + 1
self._warnSeniors(w)
self._kw[key][0] = w
return key
return None
def _findSeniors(self):
'''this function finds the seniors, counts them and assess their age. It
is costly but unlikely.'''
seniorW = 0
seniors = 0
for w in self._kw.itervalues():
if w >= seniorW:
if w == seniorW:
seniors += 1
else:
seniorsW = w
seniors = 1
self._seniors = seniors
self._seniorW = seniorW
def _warnSeniors(self, w):
#a weight can only be incremented...good
if w >= self._seniorW:
if w == self._seniorW:
self._seniors+=1
else:
self._seniors = 1
self._seniorW = w
def test():
#test code
iterations = 200000
size = 2500
nextkey = size
pd = ProbDict(dict([(i,[0,i]) for i in xrange(size)]))
start = time.clock()
for i in xrange(iterations):
key=pd._key()
w=pd[key][0]
if random.randint(0,1+pd._seniorW-w):
#the heavier the object, the more unlikely it will be removed
pd.pop(key)
probAppend = float(500+(size-len(pd)))/1000
if random.uniform(0,1) < probAppend:
nextkey+=1
pd.append(nextkey)
print (time.clock()-start)*1000/iterations, "msecs / iteration with", pd._fails, "failures /", iterations, "iterations"
weights = pd.weights()
weights.sort()
print "avg weight:", float(sum(weights))/pd._len, max(weights), pd._seniorW, pd._seniors, len(pd), len(weights)
print weights
test()
Any comments are still welcome. @Darius: your binary trees are too complex and complicated for me; and I do not think its leafs can be removed efficiently... Thx all
Solution 1:
This activestate recipe gives an easy-to-follow approach, specifically the version in the comments that doesn't require you to pre-normalize your weights:
import random
def weighted_choice(items):
"""items is a list of tuples in the form (item, weight)"""
weight_total = sum((item[1] for item in items))
n = random.uniform(0, weight_total)
for item, weight in items:
if n < weight:
return item
n = n - weight
return item
This will be slow if you have a large list of items. A binary search would probably be better in that case... but would also be more complicated to write, for little gain if you have a small sample size. Here's an example of the binary search approach in python if you want to follow that route.
(I'd recommend doing some quick performance testing of both methods on your dataset. The performance of different approaches to this sort of algorithm is often a bit unintuitive.)
Edit: I took my own advice, since I was curious, and did a few tests.
I compared four approaches:
The weighted_choice function above.
A binary-search choice function like so:
def weighted_choice_bisect(items):
added_weights = []
last_sum = 0
for item, weight in items:
last_sum += weight
added_weights.append(last_sum)
return items[bisect.bisect(added_weights, random.random() * last_sum)][0]
A compiling version of 1:
def weighted_choice_compile(items):
"""returns a function that fetches a random item from items
items is a list of tuples in the form (item, weight)"""
weight_total = sum((item[1] for item in items))
def choice(uniform = random.uniform):
n = uniform(0, weight_total)
for item, weight in items:
if n < weight:
return item
n = n - weight
return item
return choice
A compiling version of 2:
def weighted_choice_bisect_compile(items):
"""Returns a function that makes a weighted random choice from items."""
added_weights = []
last_sum = 0
for item, weight in items:
last_sum += weight
added_weights.append(last_sum)
def choice(rnd=random.random, bis=bisect.bisect):
return items[bis(added_weights, rnd() * last_sum)][0]
return choice
I then built a big list of choices like so:
choices = [(random.choice("abcdefg"), random.uniform(0,50)) for i in xrange(2500)]
And an excessively simple profiling function:
def profiler(f, n, *args, **kwargs):
start = time.time()
for i in xrange(n):
f(*args, **kwargs)
return time.time() - start
The results:
(Seconds taken for 1,000 calls to the function.)
- Simple uncompiled: 0.918624162674
- Binary uncompiled: 1.01497793198
- Simple compiled: 0.287325024605
- Binary compiled: 0.00327413797379
The "compiled" results include the average time taken to compile the choice function once. (I timed 1,000 compiles, then divided that time by 1,000, and added the result to the choice function time.)
So: if you have a list of items+weights which change very rarely, the binary compiled method is by far the fastest.
Solution 2:
In comments on the original post, Nicholas Leonard suggests that both the exchanging and the sampling need to be fast. Here's an idea for that case; I haven't tried it.
If only sampling had to be fast, we could use an array of the values together with the running sum of their probabilities, and do a binary search on the running sum (with key being a uniform random number) -- an O(log(n)) operation. But an exchange would require updating all of the running-sum values appearing after the entries exchanged -- an O(n) operation. (Could you choose to exchange only items near the end of their lists? I'll assume not.)
So let's aim for O(log(n)) in both operations. Instead of an array, keep a binary tree for each set to sample from. A leaf holds the sample value and its (unnormalized) probability. A branch node holds the total probability of its children.
To sample, generate a uniform random number x
between 0 and the total probability of the root, and descend the tree. At each branch, choose the left child if the left child has total probability <= x
. Else subtract the left child's probability from x
and go right. Return the leaf value you reach.
To exchange, remove the leaf from its tree and adjust the branches that lead down to it (decreasing their total probability, and cutting out any single-child branch nodes). Insert the leaf into the destination tree: you have a choice of where to put it, so keep it balanced. Picking a random child at each level is probably good enough -- that's where I'd start. Increase each parent node's probability, back up to the root.
Now both sampling and exchange are O(log(n)) on average. (If you need guaranteed balance, a simple way is to add another field to the branch nodes holding the count of leaves in the whole subtree. When adding a leaf, at each level pick the child with fewer leaves. This leaves the possibility of a tree getting unbalanced solely by deletions; this can't be a problem if there's reasonably even traffic between the sets, but if it is, then choose rotations during deletion using the leaf-count information on each node in your traversal.)
Update: On request, here's a basic implementation. Haven't tuned it at all. Usage:
>>> t1 = build_tree([('one', 20), ('two', 2), ('three', 50)])
>>> t1
Branch(Leaf(20, 'one'), Branch(Leaf(2, 'two'), Leaf(50, 'three')))
>>> t1.sample()
Leaf(50, 'three')
>>> t1.sample()
Leaf(20, 'one')
>>> t2 = build_tree([('four', 10), ('five', 30)])
>>> t1a, t2a = transfer(t1, t2)
>>> t1a
Branch(Leaf(20, 'one'), Leaf(2, 'two'))
>>> t2a
Branch(Leaf(10, 'four'), Branch(Leaf(30, 'five'), Leaf(50, 'three')))
Code:
import random
def build_tree(pairs):
tree = Empty()
for value, weight in pairs:
tree = tree.add(Leaf(weight, value))
return tree
def transfer(from_tree, to_tree):
"""Given a nonempty tree and a target, move a leaf from the former to
the latter. Return the two updated trees."""
leaf, from_tree1 = from_tree.extract()
return from_tree1, to_tree.add(leaf)
class Tree:
def add(self, leaf):
"Return a new tree holding my leaves plus the given leaf."
abstract
def sample(self):
"Pick one of my leaves at random in proportion to its weight."
return self.sampling(random.uniform(0, self.weight))
def extract(self):
"""Pick one of my leaves and return it along with a new tree
holding my leaves minus that one leaf."""
return self.extracting(random.uniform(0, self.weight))
class Empty(Tree):
weight = 0
def __repr__(self):
return 'Empty()'
def add(self, leaf):
return leaf
def sampling(self, weight):
raise Exception("You can't sample an empty tree")
def extracting(self, weight):
raise Exception("You can't extract from an empty tree")
class Leaf(Tree):
def __init__(self, weight, value):
self.weight = weight
self.value = value
def __repr__(self):
return 'Leaf(%r, %r)' % (self.weight, self.value)
def add(self, leaf):
return Branch(self, leaf)
def sampling(self, weight):
return self
def extracting(self, weight):
return self, Empty()
def combine(left, right):
if isinstance(left, Empty): return right
if isinstance(right, Empty): return left
return Branch(left, right)
class Branch(Tree):
def __init__(self, left, right):
self.weight = left.weight + right.weight
self.left = left
self.right = right
def __repr__(self):
return 'Branch(%r, %r)' % (self.left, self.right)
def add(self, leaf):
# Adding to a random branch as a clumsy way to keep an
# approximately balanced tree.
if random.random() < 0.5:
return combine(self.left.add(leaf), self.right)
return combine(self.left, self.right.add(leaf))
def sampling(self, weight):
if weight < self.left.weight:
return self.left.sampling(weight)
return self.right.sampling(weight - self.left.weight)
def extracting(self, weight):
if weight < self.left.weight:
leaf, left1 = self.left.extracting(weight)
return leaf, combine(left1, self.right)
leaf, right1 = self.right.extracting(weight - self.left.weight)
return leaf, combine(self.left, right1)
Update 2: In answering another problem, Jason Orendorff points out that the binary trees can be kept perfectly balanced by representing them in an array just like the classical heap structure. (This saves the space spent on pointers, too.) See my comments to that answer for how to adapt his code to this problem.
Solution 3:
I suggest you port this PHP implementation of weighted random to Python. In particular, the binary-search-based second algorithm helps address your speed concerns.
Solution 4:
I would use this recipe . You will need to add a weight to your objects, but that is just a simple ratio and put them in a list of tuples (object, conviction/(sum of convictions)). This should be easy to do using a list comprehension.