AttributeError: 'generator' object has no attribute 'to_sql' While creating datframe using generator
I am trying to create a datafrmae from fixedwidth file and load into postgresql database. My input file is very huge (~16GB) and 20Million records. So if i create dataframe it is consuming most of the available RAM. It is taking long time to complete. So i thought of using chunksize(using python generator) option and commit records to table. But it is failing with 'AttributeError: 'generator' object has no attribute 'to_sql'
error.
Inspired by this answer here https://stackoverflow.com/a/47257676/2799214
input file: test_file.txt
XOXOXOXOXOXO9
AOAOAOAOAOAO8
BOBOBOBOBOBO7
COCOCOCOCOCO6
DODODODODODO5
EOEOEOEOEOEO4
FOFOFOFOFOFO3
GOGOGOGOGOGO2
HOHOHOHOHOHO1
sample.py
import pandas.io.sql as psql
import pandas as pd
from sqlalchemy import create_engine
def chunck_generator(filename, header=False,chunk_size = 10 ** 5):
for chunk in pd.read_fwf(filename, colspecs=[[0,12],[12,13]],index_col=False,header=None, iterator=True, chunksize=chunk_size):
yield (chunk)
def _generator( engine, filename, header=False,chunk_size = 10 ** 5):
chunk = chunck_generator(filename, header=False,chunk_size = 10 ** 5)
chunk.to_sql('sample_table', engine, if_exists='replace', schema='sample_schema', index=False)
yield row
if __name__ == "__main__":
filename = r'test_file.txt'
engine = create_engine('postgresql://ABCD:ABCD@ip:port/database')
c = engine.connect()
conn = c.connection
generator = _generator(engine=engine, filename=filename)
while True:
print(next(generator))
conn.close()
Error:
chunk.to_sql('sample_table', engine, if_exists='replace', schema='sample_schema', index=False)
AttributeError: 'generator' object has no attribute 'to_sql'
My Primary goal is to improve performance. Please help me in resolving the issue or please suggest better approach. Thanks in advance.
Solution 1:
'chunck_generator' will return a 'generator' object not an actual element of the chunk. You need to iterate the object to get the chunk out of it.
>>> def my_generator(x):
... for y in range(x):
... yield y
...
>>> g = my_generator(10)
>>> print g.__class__
<type 'generator'>
>>> ele = next(g, None)
>>> print ele
0
>>> ele = next(g, None)
>>> print ele
1
So to fix your code you just need to either loop over the generator
for chunk in chunck_generator(filename, header=False,chunk_size = 10 ** 5):
yield chunk.to_sql()
But it seems convoluted. I would just do this:
import pandas.io.sql as psql
import pandas as pd
from sqlalchemy import create_engine
def sql_generator(engine, filename, header=False,chunk_size = 10 ** 5):
frame = pd.read_fwf(
filename,
colspecs=[[0,12],[12,13]],
index_col=False,
header=None,
iterator=True,
chunksize=chunk_size
):
for chunk in frame:
yield chunk.to_sql(
'sample_table',
engine,
if_exists='replace',
schema='sample_schema',
index=False
)
if __name__ == "__main__":
filename = r'test_file.txt'
engine = create_engine('postgresql://USEE:PWD@IP:PORT/DB')
for sql in sql_generator(engine, filename):
print sql
Solution 2:
Conclusion: to_sql method is not efficient to load large files. So i used copy_from method in package psycopg2 and used chunksize option while creating dataframe. Loaded 9.8 Million records(~17GB) with 98 columns each in 30mins.
I have removed original refrences of my actual file ( iam using sample file in the original post).
import pandas as pd
import psycopg2
import io
def sql_generator(cur,con, filename, boundries, col_names, header=False,chunk_size = 2000000):
frame = pd.read_fwf(filename,colspecs=boundries,index_col=False,header=None,iterator=True,chunksize=chunk_size,names=col_names)
for chunk in frame:
output = io.StringIO()
chunk.to_csv(output, sep='|', quoting=3, escapechar='\\' , index=False, header=False,encoding='utf-8')
output.seek(0)
cur.copy_from(output, 'sample_schema.sample_table', null="",sep="|")
yield con.commit()
if __name__ == "__main__":
boundries = [[0,12],[12,13]]
col_names = ['col1','col2']
filename = r'test_file.txt' #Refer to sample file in the original post
con = psycopg2.connect(database='database',user='username', password='pwd', host='ip', port='port')
cur = con.cursor()
for sql in sql_generator(cur,con, filename, boundries, col_names):
print(sql)
con.close()