Pandas groupby multiple fields then diff
Solution 1:
First, sort the DataFrame and then all you need is groupby.diff()
:
df = df.sort_values(by=['site', 'country', 'date'])
df['diff'] = df.groupby(['site', 'country'])['score'].diff().fillna(0)
df
Out:
date site country score diff
8 2018-01-01 fb es 100 0.0
9 2018-01-02 fb gb 100 0.0
5 2018-01-01 fb us 50 0.0
6 2018-01-02 fb us 55 5.0
7 2018-01-03 fb us 100 45.0
1 2018-01-01 google ch 50 0.0
4 2018-01-02 google ch 10 -40.0
0 2018-01-01 google us 100 0.0
2 2018-01-02 google us 70 -30.0
3 2018-01-03 google us 60 -10.0
sort_values
doesn't support arbitrary orderings. If you need to sort arbitrarily (google before fb for example) you need to store them in a collection and set your column as categorical. Then sort_values will respect the ordering you provided there.