Finding indices of matches of one array in another array
I have two numpy arrays, A and B. A conatains unique values and B is a sub-array of A. Now I am looking for a way to get the index of B's values within A.
For example:
A = np.array([1,2,3,4,5,6,7,8,9,10])
B = np.array([1,7,10])
# I need a function fun() that:
fun(A,B)
>> 0,6,9
You can use np.in1d
with np.nonzero
-
np.nonzero(np.in1d(A,B))[0]
You can also use np.searchsorted
, if you care about maintaining the order -
np.searchsorted(A,B)
For a generic case, when A
& B
are unsorted arrays, you can bring in the sorter
option in np.searchsorted
, like so -
sort_idx = A.argsort()
out = sort_idx[np.searchsorted(A,B,sorter = sort_idx)]
I would add in my favorite broadcasting
too in the mix to solve a generic case -
np.nonzero(B[:,None] == A)[1]
Sample run -
In [125]: A
Out[125]: array([ 7, 5, 1, 6, 10, 9, 8])
In [126]: B
Out[126]: array([ 1, 10, 7])
In [127]: sort_idx = A.argsort()
In [128]: sort_idx[np.searchsorted(A,B,sorter = sort_idx)]
Out[128]: array([2, 4, 0])
In [129]: np.nonzero(B[:,None] == A)[1]
Out[129]: array([2, 4, 0])
Have you tried searchsorted
?
A = np.array([1,2,3,4,5,6,7,8,9,10])
B = np.array([1,7,10])
A.searchsorted(B)
# array([0, 6, 9])
Just for completeness: If the values in A
are non negative and reasonably small:
lookup = np.empty((np.max(A) + 1), dtype=int)
lookup[A] = np.arange(len(A))
indices = lookup[B]