numpy array TypeError: only integer scalar arrays can be converted to a scalar index
i=np.arange(1,4,dtype=np.int)
a=np.arange(9).reshape(3,3)
and
a
>>>array([[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])
a[:,0:1]
>>>array([[0],
[3],
[6]])
a[:,0:2]
>>>array([[0, 1],
[3, 4],
[6, 7]])
a[:,0:3]
>>>array([[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])
Now I want to vectorize the array to print them all together. I try
a[:,0:i]
or
a[:,0:i[:,None]]
It gives TypeError: only integer scalar arrays can be converted to a scalar index
Short answer:
[a[:,:j] for j in i]
What you are trying to do is not a vectorizable operation. Wikipedia defines vectorization as a batch operation on a single array, instead of on individual scalars:
In computer science, array programming languages (also known as vector or multidimensional languages) generalize operations on scalars to apply transparently to vectors, matrices, and higher-dimensional arrays.
...
... an operation that operates on entire arrays can be called a vectorized operation...
In terms of CPU-level optimization, the definition of vectorization is:
"Vectorization" (simplified) is the process of rewriting a loop so that instead of processing a single element of an array N times, it processes (say) 4 elements of the array simultaneously N/4 times.
The problem with your case is that the result of each individual operation has a different shape: (3, 1)
, (3, 2)
and (3, 3)
. They can not form the output of a single vectorized operation, because the output has to be one contiguous array. Of course, it can contain (3, 1)
, (3, 2)
and (3, 3)
arrays inside of it (as views), but that's what your original array a
already does.
What you're really looking for is just a single expression that computes all of them:
[a[:,:j] for j in i]
... but it's not vectorized in a sense of performance optimization. Under the hood it's plain old for
loop that computes each item one by one.
I ran into the problem when venturing to use numpy.concatenate to emulate a C++ like pushback for 2D-vectors; If A and B are two 2D numpy.arrays, then numpy.concatenate(A,B) yields the error.
The fix was to simply to add the missing brackets: numpy.concatenate( ( A,B ) ), which are required because the arrays to be concatenated constitute to a single argument
This could be unrelated to this specific problem, but I ran into a similar issue where I used NumPy indexing on a Python list and got the same exact error message:
# incorrect
weights = list(range(1, 129)) + list(range(128, 0, -1))
mapped_image = weights[image[:, :, band]] # image.shape = [800, 600, 3]
# TypeError: only integer scalar arrays can be converted to a scalar index
It turns out I needed to turn weights
, a 1D Python list, into a NumPy array before I could apply multi-dimensional NumPy indexing. The code below works:
# correct
weights = np.array(list(range(1, 129)) + list(range(128, 0, -1)))
mapped_image = weights[image[:, :, band]] # image.shape = [800, 600, 3]
try the following to change your array to 1D
a.reshape((1, -1))