Trisect a quadrilateral into a $9$-grid; the middle has $1/9$ the area

Trisect sides of a quadrilateral and connect the points to have nine quadrilaterals, as can be seen in the figure. Prove that the middle quadrilateral area is one ninth of the whole area.enter image description here


Solution 1:

This is most easily done using vectors. Let the points $A, B, C, D$ be represented by the vectors $a, b, c, d$. The area $[ABCD]$ is equal to $\frac{1}{2}(a-c) \times (b-d) $.

If you are unfamiliar with this, consider triangulation using the origin, and sum up the 4 triangle areas, to get

$$\begin{align} [ABCD] = & \frac{1}{2} a \times b + \frac{1}{2} b \times c + \frac{1}{2} c \times d + \frac{1}{2} d \times a \\ = & (a-c) \times \frac{1}{2} b + (a-c ) \times (-\frac{1}{2} d) \\= & \frac{1}{2}(a-c) \times (b-d) \end{align}$$

It is easy to show that $W= \frac{4a+2b+c+2d} {9}, X = \frac{ 2a+4b+2c+d} { 9},Y = \frac{a+2b+4c+d} { 9} , Z = \frac{ 2a+b+2c+4d} {9} $. Hence the area is

$$ [WXYZ] = \frac{1}{2} ( \frac{3a-3c}{9} ) \times ( \frac{3b-3d}{9} ) = \frac{1}{9} \times \frac{1}{2} (a-c)(b-d) = \frac{1}{9} [ABCD]$$

Solution 2:

Consider all occurring points as vectors, as in @Calvin Lin's answer, and write $\mu$ for ${1\over3}$. Then $$p=(1-\mu)a+\mu b,\quad h=(1-\mu)d+\mu c,\quad n=(1-\mu)a+\mu d,\quad e=(1-\mu) b+\mu c\ .$$ It follows that $$(1-\mu)p+\mu h=(1-\mu)n+\mu e\quad(=:w')\ ,$$ which shows that in fact $$w=w'=(1-\mu)^2 a +\mu(1-\mu)(b+d)+\mu^2 c\ .$$ Interchanging $a$ and $c$ here gives $$y=(1-\mu)^2 c +\mu(1-\mu)(b+d)+\mu^2 a\ ,$$ so that we arrive at $$w-y=(1-2\mu)(a-c)\ .$$ Appealing to symmetry again we conclude that we also have $$x-z=(1-2\mu)(b-d)\ .$$ It follows that $${\rm area}[WXYZ]=(1-2\mu)^2\ {\rm area}[ABCD]\ ,$$ and this holds for any $\mu\in[0,{1\over2}[\ $.

Solution 3:

Claim. $W$ and $Z$ trisect $\overline{PH}$. Likewise elsewhere.

Proof. Left to the reader (for now).

Given the claim, we can make this illustrated argument:

Figures

Here, we have $\triangle ABC \sim \triangle PBF$, with $$\frac{|\overline{PB}|}{|\overline{AB}|} = \frac{|\overline{FB}|}{|\overline{CB}|} = \frac{2}{3} = \frac{|\overline{PF}|}{|\overline{AC}|} \qquad \text{and} \qquad \overline{PF} \parallel \overline{AC}$$ and $\triangle PZF \sim \triangle WZY$, with $$\frac{|\overline{WZ}|}{|\overline{PZ}|} = \frac{|\overline{YZ}|}{|\overline{FZ}|} = \frac{1}{2} = \frac{|\overline{WY}|}{|\overline{PF}|} \qquad \text{and} \qquad \overline{WY} \parallel \overline{PF}$$ so that $$|\overline{WY}|= \frac13 |\overline{AC}| \qquad \text{and} \qquad \overline{WY} \parallel \overline{AC}$$ and likewise $$|\overline{XY}|= \frac13 |\overline{BD}| \qquad \text{and} \qquad \overline{XZ} \parallel \overline{BD}$$

By the Diagonal-Diagonal-Angle formula for quadrilateral area, $$|\square WXYZ| = \frac{1}{2}|\overline{WY}||\overline{XZ}|\sin\theta = \frac12 \cdot \frac{1}{3}|\overline{AC}| \cdot \frac13 |\overline{BD}|\cdot \sin\theta = \frac19 |\square ABCD|$$