Converting a Vision VNTextObservation to a String
Solution 1:
SwiftOCR
I just got SwiftOCR to work with small sets of text.
https://github.com/garnele007/SwiftOCR
uses
https://github.com/Swift-AI/Swift-AI
which uses NeuralNet-MNIST model for text recognition.
TODO : VNTextObservation > SwiftOCR
Will post example of it using VNTextObservation once I have it one connected to the other.
OpenCV + Tesseract OCR
I tried to use OpenCV + Tesseract but got compile errors then found SwiftOCR.
SEE ALSO : Google Vision iOS
Note Google Vision Text Recognition - Android sdk has text detection but also has iOS cocoapod. So keep an eye on it as should add text recognition to the iOS eventually.
https://developers.google.com/vision/text-overview
//Correction: just tried it but only Android version of the sdk supports text detection.
https://developers.google.com/vision/text-overview
If you subscribe to releases: https://libraries.io/cocoapods/GoogleMobileVision
Click SUBSCRIBE TO RELEASES you can see when TextDetection is added to the iOS part of the Cocoapod
Solution 2:
This is how to do it ...
//
// ViewController.swift
//
import UIKit
import Vision
import CoreML
class ViewController: UIViewController {
//HOLDS OUR INPUT
var inputImage:CIImage?
//RESULT FROM OVERALL RECOGNITION
var recognizedWords:[String] = [String]()
//RESULT FROM RECOGNITION
var recognizedRegion:String = String()
//OCR-REQUEST
lazy var ocrRequest: VNCoreMLRequest = {
do {
//THIS MODEL IS TRAINED BY ME FOR FONT "Inconsolata" (Numbers 0...9 and UpperCase Characters A..Z)
let model = try VNCoreMLModel(for:OCR().model)
return VNCoreMLRequest(model: model, completionHandler: self.handleClassification)
} catch {
fatalError("cannot load model")
}
}()
//OCR-HANDLER
func handleClassification(request: VNRequest, error: Error?)
{
guard let observations = request.results as? [VNClassificationObservation]
else {fatalError("unexpected result") }
guard let best = observations.first
else { fatalError("cant get best result")}
self.recognizedRegion = self.recognizedRegion.appending(best.identifier)
}
//TEXT-DETECTION-REQUEST
lazy var textDetectionRequest: VNDetectTextRectanglesRequest = {
return VNDetectTextRectanglesRequest(completionHandler: self.handleDetection)
}()
//TEXT-DETECTION-HANDLER
func handleDetection(request:VNRequest, error: Error?)
{
guard let observations = request.results as? [VNTextObservation]
else {fatalError("unexpected result") }
// EMPTY THE RESULTS
self.recognizedWords = [String]()
//NEEDED BECAUSE OF DIFFERENT SCALES
let transform = CGAffineTransform.identity.scaledBy(x: (self.inputImage?.extent.size.width)!, y: (self.inputImage?.extent.size.height)!)
//A REGION IS LIKE A "WORD"
for region:VNTextObservation in observations
{
guard let boxesIn = region.characterBoxes else {
continue
}
//EMPTY THE RESULT FOR REGION
self.recognizedRegion = ""
//A "BOX" IS THE POSITION IN THE ORIGINAL IMAGE (SCALED FROM 0... 1.0)
for box in boxesIn
{
//SCALE THE BOUNDING BOX TO PIXELS
let realBoundingBox = box.boundingBox.applying(transform)
//TO BE SURE
guard (inputImage?.extent.contains(realBoundingBox))!
else { print("invalid detected rectangle"); return}
//SCALE THE POINTS TO PIXELS
let topleft = box.topLeft.applying(transform)
let topright = box.topRight.applying(transform)
let bottomleft = box.bottomLeft.applying(transform)
let bottomright = box.bottomRight.applying(transform)
//LET'S CROP AND RECTIFY
let charImage = inputImage?
.cropped(to: realBoundingBox)
.applyingFilter("CIPerspectiveCorrection", parameters: [
"inputTopLeft" : CIVector(cgPoint: topleft),
"inputTopRight" : CIVector(cgPoint: topright),
"inputBottomLeft" : CIVector(cgPoint: bottomleft),
"inputBottomRight" : CIVector(cgPoint: bottomright)
])
//PREPARE THE HANDLER
let handler = VNImageRequestHandler(ciImage: charImage!, options: [:])
//SOME OPTIONS (TO PLAY WITH..)
self.ocrRequest.imageCropAndScaleOption = VNImageCropAndScaleOption.scaleFill
//FEED THE CHAR-IMAGE TO OUR OCR-REQUEST - NO NEED TO SCALE IT - VISION WILL DO IT FOR US !!
do {
try handler.perform([self.ocrRequest])
} catch { print("Error")}
}
//APPEND RECOGNIZED CHARS FOR THAT REGION
self.recognizedWords.append(recognizedRegion)
}
//THATS WHAT WE WANT - PRINT WORDS TO CONSOLE
DispatchQueue.main.async {
self.PrintWords(words: self.recognizedWords)
}
}
func PrintWords(words:[String])
{
// VOILA'
print(recognizedWords)
}
func doOCR(ciImage:CIImage)
{
//PREPARE THE HANDLER
let handler = VNImageRequestHandler(ciImage: ciImage, options:[:])
//WE NEED A BOX FOR EACH DETECTED CHARACTER
self.textDetectionRequest.reportCharacterBoxes = true
self.textDetectionRequest.preferBackgroundProcessing = false
//FEED IT TO THE QUEUE FOR TEXT-DETECTION
DispatchQueue.global(qos: .userInteractive).async {
do {
try handler.perform([self.textDetectionRequest])
} catch {
print ("Error")
}
}
}
override func viewDidLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view, typically from a nib.
//LETS LOAD AN IMAGE FROM RESOURCE
let loadedImage:UIImage = UIImage(named: "Sample1.png")! //TRY Sample2, Sample3 too
//WE NEED A CIIMAGE - NOT NEEDED TO SCALE
inputImage = CIImage(image:loadedImage)!
//LET'S DO IT
self.doOCR(ciImage: inputImage!)
}
override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning()
// Dispose of any resources that can be recreated.
}
}
You'll find the complete project here included is the trained model !