What is the minimum of $BP+\frac{1}{2}CP$?
In $Rt\triangle ABC,\ \angle A=90^{\circ},\ AB=4,\ AC=6.$ The radius of $\odot A$ is $2$. What is the minimum of $BP+\frac{1}{2}CP$?
Actually, the question should be "What is the minimum of $BP+\frac{1}{3}CP$", and then it will be simple by using similarity. But I still wonder how to deal with this question.
One possible way I've got is to put it in Rectangular Coordinates and assume $P(p\ ,\ \sqrt{4-p^2})$ . By using $d=\sqrt{(x_1-x_2)^2+(y_1+y_2)^2\ }$ I can write $BP+\frac{1}{2}CP$ with $p$ . And then it can be worked out by calculating the minimum of the function $f(p)=BP+\frac{1}{2}CP$.
However , it is clear that it is very hard to work out. I tried to work it out with better and easier methods but failed. Are there other possible approaches? Thank you for your ideas in advance!
Solution 1:
Well, I made the following picture of the situation:
And we can write the following equations:
- $$\left|\text{BP}\right|=\sqrt{\left(\left|\text{AB}\right|-x_1\right)^2+\left(0-\text{y}_1\right)^2}=\sqrt{\left(\left|\text{AB}\right|-x_1\right)^2+\text{y}_1^2}\tag1$$
- $$\left|\text{CP}\right|=\sqrt{\left(0-x_1\right)^2+\left(\left|\text{AC}\right|-\text{y}_1\right)^2}=\sqrt{x_1^2+\left(\left|\text{AC}\right|-\text{y}_1\right)^2}\tag2$$
- $$\text{y}_1=\sqrt{\text{r}^2-x_1^2}\tag3$$
Combining, gives:
- $$\left|\text{BP}\right|=\sqrt{\left(\left|\text{AB}\right|-x_1\right)^2+\text{r}^2-x_1^2}\tag4$$
- $$\left|\text{CP}\right|=\sqrt{x_1^2+\left(\left|\text{AC}\right|-\sqrt{\text{r}^2-x_1^2}\right)^2}\tag5$$
So, we get:
\begin{equation} \begin{split} \mathscr{S}&=\left|\text{BP}\right|+\frac{1}{2}\cdot\left|\text{CP}\right|\\ \\ &=\sqrt{\left(\left|\text{AB}\right|-x_1\right)^2+\text{r}^2-x_1^2}+\frac{1}{2}\cdot\sqrt{x_1^2+\left(\left|\text{AC}\right|-\sqrt{\text{r}^2-x_1^2}\right)^2}\\ \\ &=\sqrt{\left|\text{AB}\right|^2+\text{r}^2-2\left|\text{AB}\right|x_1}+\frac{1}{2}\cdot\sqrt{\left|\text{AC}\right|^2+\text{r}^2-2\left|\text{AC}\right|\sqrt{\text{r}^2-x_1^2}} \end{split}\tag6 \end{equation}
Now, we can solve:
$$\frac{\partial\mathscr{S}}{\partial x_1}=0\space\Longrightarrow\space x_1=\dots\tag7$$
Using your values, we get:
$$x_1\approx1.92745\tag8$$
The exact solution 'can' be found by solving:
$$3x_1\sqrt{5-2x_1}=4\sqrt{4-x_1^2}\sqrt{10-3\sqrt{4-x_1^2}}\tag9$$
So, we get:
$$\mathscr{S}\approx5.03822\tag{10}$$